DOI QR코드

DOI QR Code

Outlier Detection from High Sensitive Geiger Mode Imaging LIDAR Data retaining a High Outlier Ratio

높은 이상점 비율을 갖는 고감도 가이거모드 영상 라이다 데이터로부터 이상점 검출

  • Received : 2012.09.01
  • Accepted : 2012.09.29
  • Published : 2012.10.31

Abstract

Point clouds acquired by a LIDAR(Light Detection And Ranging, also LADAR) system often contain erroneous points called outliers seeming not to be on physical surfaces, which should be carefully detected and eliminated before further processing for applications. Particularly in case of LIDAR systems employing with a Gieger-mode array detector (GmFPA) of high sensitivity, the outlier ratio is significantly high, which makes existing algorithms often fail to detect the outliers from such a data set. In this paper, we propose a method to discriminate outliers from a point cloud with high outlier ratio acquired by a GmFPA LIDAR system. The underlying assumption of this method is that a meaningful targe surface occupy at least two adjacent pixels and the ranges from these pixels are similar. We applied the proposed method to simulated LIDAR data of different point density and outlier ratio and analyzed the performance according to different thresholds and data properties. Consequently, we found that the outlier detection probabilities are about 99% in most cases. We also confirmed that the proposed method is robust to data properties and less sensitive to the thresholds. The method will be effectively utilized for on-line realtime processing and post-processing of GmFPA LIDAR data.

라이다 센서로 취득된 점군에는 실제 물리적인 표면에 존재하지 않는 이상점이 포함되어 있다. 이러한 이상점들은 활용을 위한 후속처리를 하기 전에 반드시 제거되어야 한다. 특히 민감도가 아주 높은 가이거 모드 검출기를 이용하는 라이다로 취득한 데이터는 높은 비율의 이상점을 포함하고 있다. 이로 인해 기존의 알고리즘은 이러한 데이터로부터 성공적으로 이상점을 검출하는데 어려움이 있었다. 이에 본 연구는 가이거 모드 영상 라이다로 획득된 높은 이상점 비율을 갖는 점군에서 이상점을 제거하는 방법을 제안한다. 제안된 방법은 의미 있는 표적의 표면은 검출기상에서 두 개 이상의 이웃픽셀에 검출되며, 이러한 이웃픽셀들로부터 출력되는 거리값은 유사하다는 점을 이용한다. 개발된 제거 기법은 시뮬레이션으로 생성된 다양한 점밀도와 이상점 비율의 모의 데이터에 적용하여 임계값과 데이터 특성에 따른 성능을 분석하였다. 대부분의 경우에 약 99% 이상의 이상점 검출성능이 나타났으며, 데이터 특성에 강인하고 임계값에 크게 민감하지 않는 검출성능을 확인하였다. 제안된 방법은 향후 가이거 모드 라이다 데이터의 온라인 실시간 처리 또는 후처리에 효과적으로 활용될 것으로 판단된다.

Keywords

References

  1. 김성준, 이임평, 2011. 가이거모드 영상 ladar 센서 모델링 및 시뮬레이션 기법, 한국군사과학기술학회 종합학술대회, pp. 1001-1004.
  2. 문지영, 이임평, 김성준, 김경옥, 2005. 점밀도 기반의 lidar 데이터로부터 outlier 검출, 대한토목학회논문집, 25(6D): 891-897.
  3. 조우석, 이영진, 좌윤석, 2003. 항공사진과 항공레이저 데이터를 이용한 건물 자동추출, 대한원격탐사학회지, 19(4): 307-317. https://doi.org/10.7780/kjrs.2003.19.4.307
  4. Akyay, T., 2008. Wavelet-based outlier detection and denoising of airborne laser scanning data, Middle East Technical University, Master thesis, Ankara, Turkey.
  5. Albota, M.A., B.F. Aull, D.G. Fouche, R.M. Heinrichs, D.G. Kocher, R.M. Marino, J.G. Mooney, N.R. Newbury, M.E. O'Brien, B.E. Player, B.C. Willard, and J.J. Zayhowski, 2002. Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays, Lincoln Laboratory Journal, 13(2): 351-370.
  6. Alshawabkeh, Y. and N. Haala, 2004. Laser scanning and photogrammetry: A hybrid approach for heritage documentation, 3rd International Conference on Science and Technology in Archaeology and Conservation, Amman, Jordan, Dec. 7-11.
  7. Baltsavias, E.P., 1999. A comparison between photogrammetry and laser scanning, ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 83-94. https://doi.org/10.1016/S0924-2716(99)00014-3
  8. Breunig, M.M., H.P. Kriegel, R.T. Ng, and J. Sander, 2000. Lof: Identifying density-based local outliers, SIGMOD Rec, 29(2): 93-104. https://doi.org/10.1145/335191.335388
  9. Carlsson, T., O. Steinvall, and D. Letalick, 2001. Signature Simulation and Signal Analysis for 3-D Laser Radar, FOI-Swedish Defence Research Agency, Technical Report, Linkoping, Sweden.
  10. Cho, P., H. Anderson, R. Hatch, and P. Ramaswami, 2006. Real-time 3D ladar imaging, Lincoln Laboratory Journal, 16(1): 147-164.
  11. Dorninger, P. and N. Pfeifer, 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds, Sensors, 8(11): 7323-7343. https://doi.org/10.3390/s8117323
  12. Fang, H.T. and D.S. Huang, 2004. Noise reduction in lidar signal based on discrete wavelet transform, Optics Communications, 233(1-3): 67-76. https://doi.org/10.1016/j.optcom.2004.01.017
  13. Feng, L., Y. Zhiwei, W. Bo, and D. Qianlin, 2011. Filtering algorithm for LiDAR outliers based on histogram and KD tree, Image and Signal Processing (CISP), Beijing, China, Oct. 15-17, vol. 5, pp. 2741-2745.
  14. Gronwall, C., F. Gustafsson, and M. Millnert, 2006. Ground target recognition using rectangle estimation, IEEE Transactions on Image Processing, 15(11): 3400-3408. https://doi.org/10.1109/TIP.2006.881965
  15. Haala, N. and C. Brenner, 1999. Extraction of buildings and trees in urban environments, ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 130-137. https://doi.org/10.1016/S0924-2716(99)00010-6
  16. Hawkins, D.M., 1980. Identification of Outliers, Chapman and Hall.
  17. Itzler, M.A., M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P.F. Zalud, T. Senko, J. Tower, and J. Ferraro, 2010. Geiger-mode avalanche photodiode focal plane arrays or three-dimensional imaging LADAR, Proceedings of SPIE, San Diego, California, USA, Aug. 27, vol. 7808, pp. 78080C-14.
  18. Jain, A.K., M.N. Murty, and P.J. Flynn, 1999. Data clustering: a review, ACM Computing Surveys, 31(3): 264-323. https://doi.org/10.1145/331499.331504
  19. Jing, L., Z. Jixian, D. Kazhong, L. Zhengjun, and S. Qunshan, 2011. A new power-line extraction method based on airborne LiDAR point cloud data, Image and Data Fusion (ISIDF), 2011 International Symposium on, Aug. 9-11, pp. 1-4.
  20. Knorr, E.M., R.T. Ng, and V. Tucakov, 2000. Distance-based outliers: Algorithms and applications, The VLDB Journal, 8(3-4): 237-253. https://doi.org/10.1007/s007780050006
  21. Kong, H.J., T.H. Kim, S.E. Jo, and M.S. Oh, 2011. Smart three-dimensional imaging ladar using two geiger-mode avalanche photodiodes, Optics Express, 19(20): 19,323-19,329. https://doi.org/10.1364/OE.19.019323
  22. Mills, S.J., M.P.G. Castro, Z.R. Li, J.H. Cai, R. Hayward, L. Mejias, and R.A. Walker, 2010. Evaluation of aerial remote sensing techniques for vegetation management in power-line corridors, IEEE Transactions on Geoscience and Remote Sensing, 48(9): 3379-3390. https://doi.org/10.1109/TGRS.2010.2046905
  23. Navarro-Serment, L.E., C. Mertz, and M. Hebert, 2010. Pedestrian detection and tracking using three-dimensional LADAR data, The International Journal of Robotics Research, 29(12): 1516-1528. https://doi.org/10.1177/0278364910370216
  24. O'Brien, M.E. and D.G. Fouche, 2005. Simulation of 3D laser radar systems, Lincoln Laboratory Journal, 15(1): 37-60.
  25. Pal, N.R., T.C. Cahoon, J.C. Bezdek, and L. Pal, 2001. A new approach to target recognition for LADAR data, IEEE Transactions on Fuzzy Systems, 9(1): 44-52. https://doi.org/10.1109/91.917113
  26. Papadimitriou, S., H. Kitagawa, P.B. Gibbons, and C. Faloutsos, 2003. LOCI: fast outlier detection using the local correlation integral, International Conference on Data Engineering (ICDE), Bangalore, India, Mar. 5-7.
  27. Remondino, F., 2011. Heritage Recording and 3D modeling with photogrammetry and 3D scanning, Remote Sensing, 3(6): 1104-1138. https://doi.org/10.3390/rs3061104
  28. Rottensteiner, F., 2003. Automatic generation of high-quality building models from lidar data, IEEE Computer Graphics and Applications, 23(6): 42-50. https://doi.org/10.1109/MCG.2003.1242381
  29. Shekhar, S., C.T. Lu, and P. Zhang, 2003. A unified approach to detecting spatial outliers, GeoInformatica, 7(2): 139-166. https://doi.org/10.1023/A:1023455925009
  30. Sohn, G. and I.J. Dowman, 2008. A model-based approach for reconstructing a terrain surface from airborne lidar data, Photogrammetric Record, 23(122): 170-193. https://doi.org/10.1111/j.1477-9730.2008.00483.x
  31. Sotoodeh, S., 2006. Outlier detection in laser scanner point clouds, IAPRS, Dresden, Germany, Sep. 25-27, vol. 36, pp. 297-298.
  32. Vosselman, G., 2002. Fusion of laser scanning data, maps, and aerial photographs for building reconstruction, Geoscience and Remote Sensing Symposium, 2002, IGARSS '02. 2002 IEEE International, vol. 1, pp. 85-88.

Cited by

  1. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment vol.13, pp.7, 2013, https://doi.org/10.3390/s130708461