• 제목/요약/키워드: real-world dataset

검색결과 148건 처리시간 0.026초

문서 중요도를 고려한 토픽 기반의 논문 교정자 매칭 방법론 (A Proofreader Matching Method Based on Topic Modeling Using the Importance of Documents)

  • 손연빈;안현태;최예림
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.27-33
    • /
    • 2018
  • 최근 국내외 연구기관에서는 논문을 저널에 제출하는 과정에서 연구결과를 효과적으로 전달하기 위해 외부 기관을 통해 논문의 문맥, 전문 용어의 쓰임, 스타일 등에 대한 논문 교정을 진행하는 경우가 증가하고 있다. 하지만 대다수의 논문 교정 회사에서는 매니저의 주관적 판단에 따라 수동으로 논문 교정자를 할당하는 시스템이며, 이에 따라 논문의 주제에 대한 전문성이 부족한 교정자를 할당하여 논문 교정 의뢰인의 만족도가 떨어지는 사례가 발생하고 있다. 따라서 본 논문에서는 효과적인 논문 교정자 할당을 위해 논문의 토픽을 고려한 논문 교정자 매칭 방법론을 제안한다. Latent Dirichlet Allocation을 이용하여 문서의 토픽 모델링을 진행하고, 그 결과를 이용하여 코사인 유사도 기반으로 사용자간 유사도를 계산하였다. 특히, 논문 교정자의 토픽 모델링 과정에서, 대표 문서로 간주되는 문서의 중요도에 따라 가중치를 부여하여 빈도수에 차별을 둬 정밀한 토픽 추정을 가능하게 한다. 실제 서비스의 데이터를 이용한 실험에서 제안 방법론의 성능이 비교 방법론보다 우수함을 확인하였으며, 정성적 평가를 통해 논문 교정자 매칭 결과의 유효성을 검증하였다.

새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법 (A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature)

  • 홍용희;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.55-64
    • /
    • 2010
  • 본 논문은 수행시간이 빠르면서 효율성이 높은 새로운 Free Rectangle 특징을 사용한 Adaboost 알고리즘 기반 얼굴 검출 방법을 제안한다. 제안하는 Free Rectangle 특징은 동일한 면적의 분리가 가능한 두 개의 사각형으로 구성된 마스크로부터 정의된다. Haar-like 특징은 다양성을 높이기 위해 일반적으로 두 개 이상의 사각 영역으로 구성한 복잡한 마스크 구조를 갖는다. 하지만, 제안하는 특징 마스크는 두 사각형이 특징 윈도우 안에 놓이는 위치와 크기에 따라 효율성이 좋은 다양한 특징을 얻을 수 있다. 또한 제안하는 특징은 일반 Haar-like 특징과 달리 마스크 형태에 상관없이 두 사각 영역의 화소 합의 차만 계산함으로 수행 시간을 크게 줄일 수 있다. 실세계 영상에서 제안하는 Adaboost 알고리즘 기반 얼굴 검출 기법은 빠른 검출 속도와 높은 검출 결과를 보여 학습 데이터만을 바꿔 다른 물체 검출에도 쉽게 적용이 가능하다.

학회 웹사이트의 토픽 정보추출을 이용한 주제에 따른 학회 자동분류 기법 (Academic Conference Categorization According to Subjects Using Topical Information Extraction from Conference Websites)

  • 이수경;김관호
    • 한국전자거래학회지
    • /
    • 제22권2호
    • /
    • pp.61-77
    • /
    • 2017
  • 최근 온라인상에 게시된 학회정보가 급증함으로써 주제에 따른 학회정보의 자동분류는 연구자들에게 효율적인 관련 학회 탐색을 가능하게 한다. 그러나 대부분의 학회 목록 제공 서비스에서는 학회명칭, 날짜, 위치, URL 등의 정보만 제공하기 때문에 학회 주제를 파악할 수 있는 정보는 학회명칭에 국한된다. 따라서 본 연구에서는 URL을 통한 학회 웹사이트의 토픽정보를 추출함으로써 학회정보량의 부족문제를 해결하고, 동시에 양질의 정보로 학습의 성능을 향상시키는 기법을 제안한다. 구체적으로는 웹사이트 URL을 통해 수집한 HTML 문서로부터 주요 콘텐츠를 추출하고, 학회명칭과 유사한 토픽 키워드 정보를 선정하여 추가 가중치를 부여한다. 실 데이터를 활용한 실험 결과, 제안된 방법인 추가적인 웹 콘텐츠 정보의 사용은 주제에 따른 학회 분류의 성능을 성공적으로 향상시킬 수 있음을 확인하였다. 추후 연구에서는 웹 사이트의 구조를 고려한 토픽 정보추출을 통해 분류의 정확성을 더욱 향상시킬 계획이다.

도시 스케일의 교통 흐름 시뮬레이션을 위한 궤적 데이터 시각화 (On Visualization of Trajectory Data for Traffic Flow Simulation of Urban-scale)

  • 최남식;;정한민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.582-585
    • /
    • 2018
  • 교통량이 증가하고 도로 네트워크가 복잡해짐에 따라 정확한 교통 흐름 파악을 통해 교통의 원활한 흐름을 유도하는 것은 많은 국가의 관심사항이다. 교통 흐름을 효과적으로 알기 위한 다양한 분석 기술 및 연구들이 있어 왔지만 위치(GPS) 데이터를 포함한 데이터 시각화를 통해 먼저 교통 흐름의 패턴을 찾는 것이 필요하다. 본 논문에서는 실제 도시의 교통 궤적을 시뮬레이션한 내용을 도구로 사용함으로써 교통 흐름의 패턴을 시각화하는 것을 목표로 한다. 이에 24시간운행 되어 지고 정해진 경로가 없는 특징을 가진 실제 택시 40대에 센서 모듈을 설치하여 IoV(Internet of Vehicle)데이터를 수집하고 이 데이터를 이용하여 전처리 과정을 거친 후 오픈소스 기반의 데이터 시각화 도구를 우리의 데이터 특성에 적합하도록 개선하였다. 해당 시각화 모델은 시간 흐름에 따른 차량 트랙킹 Dot을 통해 차량 밀집 지역과 이동 경로 패턴 인식이 가능하므로 도시 내에서 또는 도시와 도시간의 교통 흐름 파악을 통해 도시 환경 문제 개선에 기여할 것으로 기대된다.

  • PDF

사물 인터넷 환경에서의 그룹 사용자를 위한 그룹 구성 정보 기반 서비스 추천 방법 (Member Organization-based Service Recommendation for User Groups in Internet of Things Environments)

  • 이진서;고인영
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.786-794
    • /
    • 2016
  • 여러 사물 인터넷 기기들을 조합, 활용하여 다양한 서비스를 제공할 수 있게 된 환경에서 추천 시스템은 사용자가 원하는 서비스를 선택하는 데 있어 도움을 줄 수 있다. 기존의 추천 시스템에 대한 많은 연구는 주로 개인 사용자 대상의 추천에 집중되어 있으나 사물 인터넷 환경에서는 개인과 그룹 모두 사용자가 될 수 있으므로 그룹에 대한 추천 방법이 필요로 하다. 본 연구는 사물 인터넷 환경에서 그룹 사용자들의 서비스 선호도를 분석하고, 이를 바탕으로 특정 장소에서 서비스를 이용한 적이 없는 새로운 그룹 사용자에게 서비스를 추천할 수 있는 방법을 개발하였다. 본 연구에서는 그룹의 구성 정보를 기반으로 그룹들 간의 유사도를 측정하여 사용자 기반 협업 필터링을 적용하였다. 실험에서는 실제 사물 인터넷 테스트 베드 환경에서 수집된 데이터를 사용하였으며 실험 결과를 통해 제안한 서비스 추천 방법이 효과적임을 확인할 수 있었다.

상시감시기술에서 SVR과 PLSR을 이용한 Auto-association 모델링 및 성능비교 (Modeling and Comparison for Auto-association using Support Vector Regression (SVR) and Partial Least Square Regression (PLSR) in Online Monitoring Techniques)

  • 김성준;서인용
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.483-488
    • /
    • 2010
  • 센서시스템을 이용한 상시감시는 발전소의 효율적인 운전과 안전을 담보하는 데 필수적이다. 상시감시기술을 구현하기 위해서는 우선 센서로부터 전송된 신호로부터 발전소 운전파라미터의 참값을 예측하는 모델 즉 Auto-association (AA) 모델을 확보하는 것이 중요하다. 이를 위해 본 논문에서는 Support Vector Regression (SVR)과 Partial Least Square Regression (PLSR)을 이용하는 방안을 각각 제시한다. 이렇게 해서 구축된 모델은 모니터해야 할 파라미터가 많을 때에도 쉽게 적용할 수 있다. 실제 발전소에서 수집된 데이터셋을 이용하여 AA 모델링의 정확도 및 민감도를 비교한 결과, 정확도 면에서는 SVR이 우수한 반면 민감도 면에서는 PLSR이 다소 나은 것으로 나타났다.

새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법 (A New Head Pose Estimation Method based on Boosted 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.105-109
    • /
    • 2021
  • 본 논문에서는 Boosted 3-D PCA 방법을 데이터 세트로 평가하고 성능을 평가한다. 그런 다음 네트워크의 특징과 성능을 분석하겠습니다. 본 논문에서는 Boosted 3-D PCA 학습방법을 사용하여 300W-LP 데이터 학습을 수행했으며 AFLW2000 데이터 세트를 사용하여 평가를 평가했다. 결과는 이 성능 결과는 기존 랜드마크 대 포즈 방법보다 자유롭게 얼굴 이미지의 데이터 세트를 사용하여 학습할 수 있으므로 실제 상황에서 포즈를 정확하게 예측할 수 있다. 키포인트 세트의 최적화는 독립적이지 않기 때문에, 우리는 계산 시간을 줄일 방법을 확인했다. 이 방법은 Boosted 3-D PCA 성능을 향상시키거나 다양한 애플리케이션 도메인에 적용하는 데 매우 중요한 자원이 될 것으로 예상한다

로직에 기반 한 트리 구조의 퍼지 뉴럴 네트워크를 이용한 복합 화력 발전소의 출력 예측 (Output Power Prediction of Combined Cycle Power Plant using Logic-based Tree Structured Fuzzy Neural Networks)

  • 한창욱;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.529-533
    • /
    • 2019
  • 오늘날 복합 화력 발전소는 전력 생산을 위해 많이 사용되고 있고, 최근에는 운전 매개 변수를 기반으로 발전 출력을 예측하는 것이 주요 관심사이다. 본 논문에서는 복합 화력 발전소의 출력을 예측하기 위해 컴퓨터 지능 기법을 이용하는 방법을 제시한다. 컴퓨터 지능 기술은 지속적으로 발전되어 많은 실제 문제에 적용되어 왔다. 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 발전 출력을 예측하고자 한다. 트리 구조의 퍼지 뉴럴 네트워크는 퍼지 뉴런을 노드로 선택하고 관련 입력을 최적으로 선택하여 규칙 수를 줄이는 장점이 있다. 네트워크의 최적화를 위해 2 단계 최적화 방법이 사용된다. 유전 알고리즘은 최적의 노드와 리프를 선택하여 네트워크의 이진 구조를 최적화 한 다음 랜덤 신호 기반 학습을 수행하여 최적화 된 이진 연결을 단위 구간에서 미세 학습한다. 제안 된 방법의 유용성을 검증하기 위해 UCI Machine Learning Repository Database에서 얻은 복합 화력 발전소 데이터를 사용한다.

MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법 (An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions)

  • 서양진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.179-188
    • /
    • 2022
  • 기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

허밍: DeepJ 구조를 이용한 이미지 기반 자동 작곡 기법 연구 (Humming: Image Based Automatic Music Composition Using DeepJ Architecture)

  • 김태헌;정기철;이인성
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.748-756
    • /
    • 2022
  • Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.