Journal of the Korean Data and Information Science Society
/
제22권6호
/
pp.1029-1040
/
2011
본 연구에서는 실제 환경에 적용 가능한 지능형 자율 이동 방법을 개발하기 위해 위치정보를 사용하지 않고 지도 작성이 가능한 지능형 이동 알고리즘을 제안한다. 제안한 알고리즘은 온라인으로 동작하면서 위치 정보를 사용하지 않고 지도 작성이 가능 할 뿐 아니라 현실 세계에 적용 가능하기 위해 많은 계산량을 요구하지도 않는다. 이는 이동 로봇의 실세계 주행과 같은 대용량의 이미지 처리가 필요한 경우에는 매우 유용하게 사용될 수 있다. 토이 자료와 대용량 자료에 대해 제안한 알고리즘을 적용한 결과 기존의 방법에 비해 적은 메모리와 새로운 입력에 대해 고유공간을 새로 계산하지 않아도 되어 로봇의 현실세계의 주행에도 문제가 없는 것으로 판단되었다.
Occupant behaviors and body contact with vehicle interior parts are main injury mechanism in far-side collisions. In vehicle side impact accident where the crash accident occurs on the opposite side of the vehicle from the a particular occupant, it is exposed in terms of relatively larger lateral motion to interact with the opposite side of the vehicle structure. The challenge of minimizing motions of upper body and injury risk according to a direct contact is a primary occupant protection research. This study has performed a data analysis of real-world accident database extracted from the 2016~2020 CISS database and a parametric investigation of impact angles and occupant kinematics in far-side lateral and oblique impact simulations. A detailed data analysis was conducted to reveal the relationship among the accident and injury data. Database analysis and computational far-side impact results proposed the fundamental vehicle design for safety improvement in far-side collisions.
The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.
Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.
Hidden Markov Model is one of the most successful and popular tools for modeling real world sequential data. Real world signals come in a variety of shapes and variabilities, among which temporal and spectral ones are the prime targets that the HMM aims at. A new problem that is gaining increasing attention is characterizing missing observations in incomplete data sequences. They are incomplete in that there are holes or omitted measurements. The standard HMM algorithms have been developed for complete data with a measurements at each regular point in time. This paper presents a modified algorithm for a discrete HMM that allows substantial amount of omissions in the input sequence. Basically it is a variant of Baum-Welch which explicitly considers the case of isolated or a number of omissions in succession. The algorithm has been tested on online handwriting samples expressed in direction codes. An extensive set of experiments show that the HMM so modeled are highly flexible showing a consistent and robust performance regardless of the amount of omissions.
FPS 게임 속 시가지 맵에서 간판, 현수막, 벽보 등의 옥외광고가 흔히 등장한다. 본 논문은 실제 상권들의 옥외광고를 FPS 게임의 시가지 맵에 자동으로 배치하는 방법을 제안한다. 옥외광고는 실제 제품이나 기업의 광고이며 서버에서 관리된다. 실제 광고가 업데이트 되는 경우 게임 소스를 수정하지 않고도 자동으로 배치된다. 광고의 배치에 있어서 플레이어의 위치와 실제 상권의 위치의 관계, 실제 상점의 서비스 형태 등을 활용한다. 수집한 속성들에 우선순위 점수를 부여하여 높은 순위가 우선적으로 맵에 배치된다. 제안하는 배치 방법은 플레이어의 위치를 기반으로 광고를 배치하므로 친근감 유발과 함께 광고 효과를 높일 수 있다.
There has been rapid diffusion of digital innovation technology(DIT) such as 3 D CAD, CAE, simulation software which enable firms to see the future results of intended product designs through 3 D diagram and simulated results. This technology helps firms to reduce trial and error process by solving later stage problems in earlier stages. The DIT being the technology reflecting the real world, as a tool representing the simplified form of the real world, the degree of reflecting the real world(fidelity) is important in utilizing the DIT. This study is an exploratory research examining the process of reviewing the fidelity of the DITs and developing the complementary process necessary for utilizing the DIT with 'not good enough' fidelity. This study could draw out, from its case study, an exploratory hypothesis about the process of developing the complementary process. In the process, there is an analysis of the corresponding relationship between the actual data and the output data of the DIT, e.g. simulated result. Then the input data or output data are adjusted on the basis of the analysis of the corresponding relationship so that the discrepancy between the actual data and the expected interpretation of the output data, through the adjustment, of the DIT, can be reduced. This process is sometimes accompanied by the process of generating experimental data, which reflect the unique situation of the product development process of a company, to be put to the data base of DIT. The complementary process is the process requiring knowledge sharing and adjustment activities across different divisions. This study draw outs implications for effective management of the fidelity of DIT tools.
This paper presents a multi-robot localization based on multidimensional scaling (MDS) in spite of the existence of incomplete and noisy data. While the traditional algorithms for MDS work on the full-rank distance matrix, there might be many missing data in the real world due to occlusions. Moreover, it has no considerations to dealing with the uncertainty due to noisy observations. We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr$\ddot{o}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).
Communications for Statistical Applications and Methods
/
제31권3호
/
pp.323-336
/
2024
The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.
Logistics optimization problems related with vehicle routing such as warehouse locating, track scheduling, customer order delivery, wastage pickup etc. are very interesting and important issues to date. Many Vehicle Routing and Scheduling Systems (VRSS) have been developed/proposed to optimize the logistics problems. But majority of them are dedicated to a particular problem and are unable to handle the real world spatial data directly. The system developed for one problem may not be suitable for others due to inter-problem constraint variations. The constraints may include geographical, environmental and road traffic nature of the working region along with other constraints related with the problem. So the developer always needs to modify the original routing algorithm in order to fulfill the purpose. In our study, we propose a general-purpose platform by combining GIS road map and Database Management System (DBMS), so that VRSS can interact with real world spatial data directly to solve different kinds of vehicle routing problems. Using the features of our developed system, the developer can frequently modify the existing algorithm or create a new one to serve the purpose.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.