References
- 김기열 (2010). <무향칼만필터를 이용한 로봇 위치인식의 향상>, 석사학위논문, 인하대학교, 서울.
- 박혜정 (2009). 최소제곱 서포터벡터기계를 이용한 시장점유율 자료 분석. <한국데이터정보과학회지>, 20, 879-886.
- 석경하 (2010). 최소제곱 서포터벡터기계 형태의 준지도 분류. <한국데이터정보과학회지>, 21, 461-470.
- 황진수, 김지연 (2009). 마이크로어레이 자료에서 서포터벡터머신과 데이터 뎁스를 이용한 분류방법의 비교 연구. <한국데이터정보과학회지>, 20, 419-425.
- 황창하, 신사임 (2010). 커널기계 기법을 이용한 일반화 이분산 자기회귀모형 추정. <한국데이터정보과학회지>, 20, 879-886
- Andrade, J., Vidal, T. and Sanfeliu, A. (2005). Unscented transformation of vehicle state in SLAM. Proceeding International Conference on Robotics and Automation, 323-328.
- Brunskill, E. and Roy, N. (2005). SLAM using Incremental probabilistic PCA and dimensionality reduction. Proceeding International Conference on Robotics and Automation, 342-347.
- Castellanos, J. A., Montiel, M. M., Neira, J. and Tardos, J. D. (1999). The spmap: A probabilistic framework for simultaneous localization and map building. IEEE Transactions on Robotics and Automation, 15, 948-952. https://doi.org/10.1109/70.795798
- De Geeter, J., Brussel, H. and De Schutter, J. (1997). A smoothly constrained Kalman filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 1171-1177. https://doi.org/10.1109/34.625129
- Guivant, J. and Nebot, E. (2001). Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17, 242-257. https://doi.org/10.1109/70.938382
- Hall, P., Marshall, D. and Martin. R. (1998). Incremental eigenalysis for classification. In British Machine Vision Conference, 1, 286-295.
- Julier, S. and Uhlmann, J. (1997) A new extension of the Kalman filter to nonlinear systems. Proceeding 11th International Symposium Aerospace/Defense Sensing, Simulation and Controls, 182-193.
- Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Proceeding of the IEEE, 92, pp.401-422.
- Langelaan, J. and Rock, S. (2005). Passive GPS-free navigation for small UAVs. IEEE Aerospace Conference, 1-9.
- Lee, S., Lee, S. and Kim, D. (2006). Recursive unscented Kalman filtering based SLAM using a large number of noisy observations. International Journal of Control, Automation, and Systems, 4, 736-747.
- Leonard, J. and Feder, H. (2001). Decoupled stochastic mapping. IEEE Journal of Oceanic. Engineering, 26, 561-571. https://doi.org/10.1109/48.972094
- Martinez-Cantin, R. and Castellanos, J. (2005). Unscented SLAM for large-scale outdoor environments. Proceeding IEEE International Conference of Intelligent Robots and System, 328-333.
- Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philosophy Transaction Royal Society London, 209, 415-446. https://doi.org/10.1098/rsta.1909.0016
- Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B. (2002). Fast-SLAM: A factored solution to the simultaneous localisation and mapping problem. Proceeding Artificial Intelligence for Interactive Digital Entertainment Conference, 593-599.
- Moerland, P. (2000). An on-line EM algorithm applied to kernel PCA, Instituto de Investigacion Agropecuaria de Panama Research Report, 00-18.
- Murakami, H. and Kumar, B. V. K. V. (1982). Efficient calculation of primary images from a set of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 511-515.
- Newman, P. (1999). On the structure and solution of the simultaneous localization and map building problem. Ph.D, dissertation, University Sydney, Australia.
- Pierce, D. and Kuipers, B. (1994). Learning to explore and build maps. Accessible at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2516.
- Rosipal, R. and Girolami, M. (2001). An expectation maximization approach to nonlinear component analysis. Neural Computation, 13, 505-510. https://doi.org/10.1162/089976601300014439
- Scholkopf, B., Smola, A. and Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319. https://doi.org/10.1162/089976698300017467
- Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Miller, K. R., Ratsch, G. and Smola, A. J. (1999). Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10, 1000-1017. https://doi.org/10.1109/72.788641
- Simon, D. and Chia, T. (2002). Kalman filtering with state equality constraints. IEEE Transactions on Aerospace and Electronic Systems, 38, 128-136. https://doi.org/10.1109/7.993234
- Smola, A. J., Mangasarian, O. L. and Scholkopf, B. (1999). Sparse kernel feature analysis, Technical Report 99-03, University of Wisconsin, Data Mining Institute, Madison.
- Tardos, J. D.,. Neira, J., Newman, P. and Leonard, J. (2002). Robust mapping and localization in indoor environment using sonar data. International Journal of Robotics Research, 21, 311-330. https://doi.org/10.1177/027836402320556340
- Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H. and Ng, A. Y. (2002). Simultaneous mapping and localization with sparse extended information filter. Accessible at http://robotics.caltech.edu/readinggroup/thrun.tr-seif02.pdf.
- Tipping, M. E. and Bishop, C. M. (1998). Mixtures of probabilistic principal component analysers. Neural Computation, 11, 443-482.
- Wen W. and Durrant-Write, H. (1991). Model based active object localization using multiple sensors. Proceeding Intelligent Robotics and Systems, 1448-1452.
- Williams, S. B., Dissanayake, G. and Durrant-Whyte, H. (2002). An efficient approach to the simultaneous localization and mapping problem. Proceeding IEEE International Conference on Robotics and Automation, 406-411.
- Winkeler, J., Manjunath, B. S. and Chandrasekaran, S. (1999). Subset selection for active object recognition. In Proceeding Computer Vision and Pattern Recognition, 2, 511-516.
- Yairi, T. (2007). Map building without localization by dimensionality reduction techniques. Accessible at http://www.machinelearning.org/proceedings/icml2007/papers/224.pdf.
- Yogesh, R. S., Dambreville, S. and Tannenbaum, A. (2006). Statistical Shape Analysis using Kernel PCA. accessible at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.7604.
- Vapnik, V. (1998). Statistical learning theory, John Wiley & Sons, New York.