• Title/Summary/Keyword: real-world crash

Search Result 15, Processing Time 0.027 seconds

Construction of Driver's Injury Risk Prediction in Different Car Type by Using Sled Model Simulation at Frontal Crash (슬레드 모델 시뮬레이션을 이용한 자동차 정면충돌에서 차량 형태별 운전자 상해 판정식 제작)

  • Moon, Jun Hee;Choi, Hyung Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.136-144
    • /
    • 2013
  • An extensive real world in-depth crash accident data is needed to make a precise occupant injury risk prediction at crash accidents which might be a critical information from the scene of the accident in ACNS(Automatic Crash Notification System). However it is rather unfortunate that there is no such a domestic database unlike other leading countries. Therefore we propose a numerical method, i.e., crash simulation using a sled model to make a virtual database that can substitute car crash database in real world. The proposing crash injury risk prediction is validated against a limited domestic crash accident data.

A study on the sled test methods for IIHS small overlap performance development (IIHS small overlap 성능개발을 위한 대차 시험 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Kim, Sungwon;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2013
  • Small overlap crash caused fatal injury in real-world crash. IIHS(Insurance Institute for Highway Safety) proposed the small overlap test. The objective of this study is to analyze dummy injury criteria and dummy excursion on the sled reinforced body angle. Result of the comparisons of dummy injury criteria of a head, neck, and chest was best correlation between sled and vehicle test on base $angle+3^{\circ}$. However, lower extremity was not correlation because sled test could not copy of intrusion. There were a correlation between dummy movement and sled reinforced body angle. Sled reinforced body angle affects the lateral direction of excursion more than longitudinal excursion.

Estimation of Injury Severity of Occupant based on the Vehicle Deformation at Frontal Crash Accident (자동차 정면충돌에서 자동차 영구 변형량에 따른 승객 상해 추정)

  • Kim, Seungki;Choi, Hyung Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • The estimation of occupant injury risk at crash accident is one of the most important assessments for the vehicle crashworthiness performance. The design of safety devices such as occupant restraining system also depend on the kinematics of occupant and its injury risk. The real world in-depth accident investigation provides detailed and realistic information of vehicle damage and occupant injury as well as the accident conditions. This paper introduces a statistical analysis of NASS/CDS database and domestic accident data to correlate speed change, vehicle damage extend, and occupant injury at frontal crash. The maximum crush extend shows a linear relationship with the effective impact speed. The injury risks of the occupant with and without restraining were also respectively quantified with the crush extend. This result can be effectively used for the emergent rescue of crash victims with automatic crash notification system.

Real-world Accident Study on Injury Characteristics of Elderly Driver in Car-to-Car Frontal Crashes (정면충돌 시 고령운전자 상해 특성에 관한 실사고 연구)

  • Hong, Seung-Jun;Park, Won-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2011
  • Real-world accident cases were investigated to understand injury characteristics of the elderly driver. A total 10 cases of car-to-car frontal crash accidents from passenger car including SUV claimed to domestic car insurance company were reviewed. The injury characteristics of the elderly were analyzed from personal information (gender, age), medical treatment record (medical certificate, curative days), vehicle information (model, air-bag, seatbelt) and damage information. This study showed that elderly driver has higher possibility of thorax injury than non-elderly's. Moreover, Injury type and severity were more severe than non-elderly driver at similar type accident conditions. Also, elderly driver's medical treatment period needs 3 times more than non-elderly driver's.

The Effect of Bumper Mismatch on Vehicle Repair Cost (차량 간 범퍼높이 차이가 수리비에 미치는 영향)

  • Choi, Dong-Won;Park, In-Song;Hong, Seung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • It is a frequent occurrence in urban traffic - a low-speed collision in which one vehicle hits the back of another. The vehicles often sustain expensive damage. Bumpers can reduce this damage, but only line up so the initial contact in an impact is bumper to bumper. Then the bumpers on the colliding vehicles have to absorb the crash energy, keeping damage away from expensive sheet metal, lights, and other components. In real world accidents, Bumper mismatches in crashes are increasing, and the resulting repair costs from low-speed collisions are escalating. In this study, we investigated the bumper rail height and analyzed their effects on repair cost. Futhermore, Our 16kph front-into-rear crash tests demonstrates bumper mismatch problem.

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

Study for Real-World Accident Database and Occupant Behavior Analysis in Far-Side Collisions (Far-Side 실사고 분석과 승객거동해석 연구)

  • Jaeho, Shin;Chang Min, Baek
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.77-83
    • /
    • 2022
  • Occupant behaviors and body contact with vehicle interior parts are main injury mechanism in far-side collisions. In vehicle side impact accident where the crash accident occurs on the opposite side of the vehicle from the a particular occupant, it is exposed in terms of relatively larger lateral motion to interact with the opposite side of the vehicle structure. The challenge of minimizing motions of upper body and injury risk according to a direct contact is a primary occupant protection research. This study has performed a data analysis of real-world accident database extracted from the 2016~2020 CISS database and a parametric investigation of impact angles and occupant kinematics in far-side lateral and oblique impact simulations. A detailed data analysis was conducted to reveal the relationship among the accident and injury data. Database analysis and computational far-side impact results proposed the fundamental vehicle design for safety improvement in far-side collisions.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Plastic mechanism analysis of vehicle roof frames consisting of spot-welded steel hat sections

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1085-1098
    • /
    • 2014
  • Plastic mechanism analysis of structures subjected to large deformation has long been used in order to determine collapse mechanisms of steel structures, and the energy absorbed in plastic deformation during such collapses. In this paper the technique is applied to vehicle roof structures that undergo large plastic deformation as a result of rollover crashes. The components of such roof structures are typically steel spot-welded hat-type sections. Ten different deformation mechanisms are defined from investigations of real-world rollover crashes, and an analytical technique to determine the plastic collapse load and energy absorption of such mechanisms is determined. The procedure is presented in a generic manner, such that it may be applied to any vehicle structure undergoing a rollover induced collapse. The procedure is applied to an exemplar vehicle, in order to demonstrate its application in determining the energy absorbed in the deformation of the identified collapse mechanisms. The procedure will be useful to forensic crash reconstructionists, in order to accurately determine the initial travel velocity of a vehicle that has undergone a rollover and for which the post-crash vehicle deformation is known. It may also be used to perform analytical studies of the collapse resistance of vehicle roof structures for optimisation purposes, which is also demonstrated with an analysis of the effect of varying the geometric and material properties of the roof structure components of the exemplar vehicle.

A Study on Cyclist Accident Analysis on Korea Roads with Typology of iGLAD (iGLAD 사고 분류 유형을 이용한 자전거 탑승자 교통사고 분석)

  • Lee, Hwasoo;Jang, Eunji;Yim, Jonghyun;Lee, Jimin;Kim, Jaehoon;Song, Bongsob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 2018
  • This paper reports an analysis of cyclist accident cases with respect to passenger vehicles on Korean roads. A typology based on Initiative for the Global Harmonization of Accident Data (iGLAD) code book is applied to a traffic accident analysis system(TAAS), which has the real-world crash data on Korea roads, to understand the accident scenarios in more detail and efficiently. Similarly this typology has been used for Germany In-Depth Accidents Study (GIDAS) as well. The accident data analysis with consideration of the typology of Korean road conditions may prioritize traffic safety issues regarding cyclists and is aimed to develop an Automatic Emergency Braking (AEB) system for cyclist. In summary, this paper characterizes and analyzes the scenarios of cyclist crashes with passenger car. The most common accident scenarios on Korean roads are Car-to-Bicyclist Nearside Adult (CBNA) and Car-to-Bicyclist Longitudinal Adult (CBLA), which are more than 86% of total accidents cases. Therefore, it is inferred that AEB cyclist system should include these accident types in the operational design domain to reduce more fatality in Korea.