• Title/Summary/Keyword: real-time simulation

Search Result 3,626, Processing Time 0.032 seconds

Multimicrocomputer Network Design for Real-Time Parallel Processing (실시간 병렬처리를 위한 다중마이크로컴퓨터망의 설계)

  • 김진호;고광식;김항준;최흥문
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1518-1527
    • /
    • 1989
  • We proposed a technique to design a multimicrocomputer system for real-time parallel processing with an interconnection network which has good network latency time. In order to simplify the performance evaluation and the design procedure under the hard real-time constraints we defined network latency time which takes into account the queueing delays of the networks. We designed a dynamic interconnection network following the proposed technique, and the simulation results show that we can easily estimate the multimicrocomputer system's approximate performance using the defined network latency time before the actual design, so this definition can help the efficient design of the real-time parallel processing systems.

  • PDF

A Study on HILS System for Virtual Distribution System Using LabVIEW (LabVIEW를 이용한 가상 배전계통의 HILS 시스템 구축에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Kim, Tae-Seong
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.385-391
    • /
    • 2020
  • Overcurrent and abnormal voltages in the distribution system can cause not only burden of power plant but also damage to customers. As a result, researches related to the distribution automation have been widely conducted by utilizing a real time digital simulation to improve the reliability of power supply through rapid failure handing, reduction of power failure intervals and failure recovery. However, the distribution automation systems using the real time digital simulator are expensive and limited to verify actual hardwares. Therefore, in this paper, an external hardware devices was developed based on the distribution system analysis results of the digital simulator. And real-time simulation and functional verification are implemented by the real feeder remote terminal units used in distribution automation. The effectiveness of the proposed system is verified through several experiments.

Implementation of a 4-Channerl ADPCM CODEC Using a DSP (DSP를 사용한 4채널용 ADPCM CODEC의 실시간 구현에 관한 연구)

  • Lee, Ui-Taek;Lee, Gang-Seok;Lee, Sang-Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.29-38
    • /
    • 1985
  • In this paper we have designed and implemented in real time a simple, efficient and flexible AOPCM cosec using a high speed digital processor, NEC 7720. For ADPCM system, we have used an instantaneous adaptive quantizer and a first-order fixed predictor. The software for NEC 7720 has been developed and it was found that the NEC 7720 was capable of performing the entire ADPCAt algorithm for 4 channels in real time as optimizing the program. Computer simulation has born made to investigate a computational accuracr of NEC 7720 and to de-termine necessary parameters for a ADPCM codec. Real telephone speech, RC-shaped Gaussian noise and 1004 Hz tone signal were used for simulation. In simulation, the parameters werc optimized from the computed SNR and the informal listening test. The developed software was tested in real time operation using a hardware emulator for NEC 7720. It took a maximum 23.25$\mu$s to encode one sample and 113.5$\mu$s, including all the necessary 1/0 operations, to encode 4 channels. In the case of decoding process, it took 24.75$\mu$s to decode one sample and 119.5$\mu$s to decode 4 channels.

  • PDF

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

Reinforcement Method to Enhance Adaptive Route Search for Efficient Real-Time Application Specific QoS Routing (Real-Time Application의 효과적인 QoS 라우팅을 위한 적응적 Route 선택 강화 방법)

  • Oh, Jae-Seuk;Bae, Sung-Il;Ahn, Jin-Ho;Sungh Kang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.71-82
    • /
    • 2003
  • In this paper, we present a new method to calculate reinforcement value in QoS routing algorithm targeted for real-time applications based on Ant algorithm to efficiently and effectively reinforce ant-like mobile agents to find the best route toward destination in a network regarding necessary QoS metrics. Simulation results show that the proposed method realizes QoS routing more efficiently and more adaptively than those of the existing method thereby providing better solutions for the best route selection for real-time application that has high priority on delay jitter and bandwidth.

An efficient channel assignment meghod for real-time service in the IEEE 802.11 wireless LAN system (IEEE 802.11 무선 LAN 환경에서 실시간 서비스를 제공하기 위한 채널 구간 할당 방안)

  • 박중신;류시훈;강태원;이준호;이재용;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1249-1259
    • /
    • 1998
  • This paper proposes an efficient channel assignment method for real-time service in the IEEE 802.11 Wireless LAN system, and analyzes the supportability to real-time service and the channel utilzation of that through computer simulations. The improved MAC(Medium Access Control) protocol employing the proposed channel assignment method achieved good throughput over contention period as well as contention-free period by making real-time terminals transmit the information about their desiring value before starts of data transmissions. For performance evaluation of the proposed method, a simulation analyzing the variation of allocated bandwidths to terminals using real-time service and their buffer sizes wasexecuted. Real-time data traffics was modeled s 7-stae transition VBR sources, and asynchronous data traffics modeled as Poisson processes. In the simulation, the proposed method showed smaller variation of the bandwidth of each terminal and samller buffer size than the existing method, and also recorded good throughput over contention period.

  • PDF

Production-distribution Planning in Supply Chain Management Considering Processing Times and Capacity Using Simulation and Optimization Model (시간과 능력을 고려한 공급사슬 경영에서의 생산-분배 계획을 위한 시뮬레이션과 최적화모델의 적용)

  • Sook Han Kim;Young Hae Lee
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.165-173
    • /
    • 2000
  • Analytic models have been developed to solve integrated production-distribution problems in supply chain management (SCM). As one of major constraints in analytic models, capacity, which is the total operation time in this paper has mostly been known or disregarded assuming infinite capacity. Also, as major factors, machine processing time to fabricate or assemble a part or product at a certain machine center in production system and vehicle processing time to deliver a product to a customer by a certain vehicle in distribution system have been fixed and regarded as a static factor, But in the real systems significant differences exit between capacity and the required time to achieve the production-distribution plan and between processing time and consumed time to process a part or product. In this paper, capacity and processing times in the analytic model are considered as dynamic factors and adjusted by the results from independently developed simulation model, which includes general production-distribution characteristics. Through experiments, we obtain the more realistic solutions reflecting stochastic natures by performing the iterative analytic-simulation procedure.

  • PDF

Comparative Study of GPS-Integrated Concrete Supply Management using Discrete Event Simulation

  • Zekavat, Payam Rahnamayie;Mortaheb, Mohammad Mehdi;Han, Sangwon;Bernold, Leonhard
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • The management of vehicular supply of "perishable" construction material, such as concrete mixes, faces a series of uncertainties such as weather, daily traffic patterns and accidents. Presented in this paper is a logistics control model for managing a hauling fleet with interrelated processes at both ends and queue capacities. Discrete event simulation is used to model the complex interactions of production units and the randomness of the real world. Two alternative strategies for ready mix concrete delivery, with and without an off-site waiting queue, are studied to compare supply performance. Secondly, the paper discusses the effect of an agent-based GPS tracking system providing real-time travel data that lessens the uncertainty of trucking time. The results show that the combination of GPS information with off-site queuing reduces productivity loss and process wastes of concrete placement as well as the idleness of supply trucks when crew or pump experience an unexpected stoppage.

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification

  • Suk, Byong-Suk;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1465-1469
    • /
    • 2003
  • In general satellite verification process, the AOCS (Attitude & Orbit Control Subsystem) should be verified through several kinds of verification test which can be divided into two major category like FBT (Fixed Bed Test) and polarity test. And each test performed in different levels such as ETB (Electrical Test Bed) and satellite level. The test method of FBT is to simulate satellite dynamics with sensors and actuators supported by necessary environmental models in ETB level. The VDS (Vehicle Dynamic Simulator) try to make the real situation as possible as the on-board processor will undergo after launch. The purpose of FBT test is to verify that attitude control logic function and hardware interface is designed as expected with closed loop simulation. The VDS is one of major equipments for performing FBT and consists of software and hardware parts. The VDS operates in VME environments with target board, several commercial boards and custom boards based on the VxWorks real time operating system. In order to make time synchronization between VDS and satellite on-board processor, high reliable semaphore was implemented to make synchronization with the interrupt signal from on-board processor. In this paper, the real-time operating environment used on VDS equipment is introduced, and the hardware and software configurations of VDS summarized in the systematic point of view. Also, we try to figure out the operational concept of VDS and AOCS verification test method with close-loop simulation.

  • PDF

A Study on Real Time Catenary Impedance Estimation Technique using the Synchronized Measuring Data between Substation and Train (변전소와 차량간의 동기화를 통한 실시간 전차선로 임피던스 예측 기법 연구)

  • Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1458-1464
    • /
    • 2013
  • This paper proposed a new real time catenary impedance estimation technique using synchronized power data from the measured data of operating vehicle and substation for catenary protective relay and fault locator setting. This paper presented estimation equation of catenary impedance using synchronized power data between substation and vehicle of AT feeding system for the performance verification of the proposed technique. Also AC feeding system is modeled through power analysis program and performance was verified through simulation according to various load changes. We verified that average 2.38%(distance equivalent 23.8 m) error appeared between the proposed estimation equation of catenary impedance and power analysis program simulation output in no connection double track system between up track and down track. Furthermore, We confirmed that estimation error is bigger depending on the increasing the distance from substation and vehicle impedance using only using vehicle current when calculating vehicle impedance in connection double track system between up track and down track. But, We confirmed that the proposed technique estimated accurately catenary impedance regardless of vehicle impedance and distance from substation.