• 제목/요약/키워드: real-time XRD

검색결과 16건 처리시간 0.02초

산화주석을 기반으로 한 DMMP 가스센서 제작 (Fabrication of DMMP gas sensor based on $SnO_2$)

  • 최낙진;반태현;백원우;이우석;김재창;허증수;이덕동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.942-945
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas was dimethylmethylphosphonate($C_3H_9O_3P$, DMMP) that is simulant gas of nerve gas. Sensing material was $SnO_2$ added ${\alpha}-Al_2O_3$ with $4{\sim}20wt.%$ and was physically mixed. And then it was deposited by screen printing method on alumina substrate. Sensor device was consisted of sensing electrode with interdigit(IDT) type in front and heater in back side. Total size of device was $7{\times}10{\times}0.6mm^3$. Crystallite size of fabricated $SnO_2$ were characterized by X-ray diffraction(XRD, Rigaku) and morphology of the $SnO_2$ powders was observed by a scanning electron microscope(SEM, Hitachi). Fabricated sensor was measured as flow type and sensor resistance change was monitored real time using LabVIEW program. The best conditions as added $Al_2O_3$ amounts and operating temperature changes were 4wt.% and $300^{\circ}C$ in DMMP 0.5ppm, respectively. The sensitivity was over 75%. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with ${\pm}3%$ in full scale.

  • PDF

Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes

  • Nandi, B.K.;Das, B.;Uppaluri, R.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • 제1권2호
    • /
    • pp.121-137
    • /
    • 2010
  • This work presents inexpensive inorganic precursor formulations to yield submicron range symmetric ceramic microfiltration (MF) membranes whose average pore sizes were between 0.1 and $0.4{\mu}m$. Incidentally, the sintering temperature used in this work was about 800 to $950^{\circ}C$ instead of higher sintering temperatures ($1100^{\circ}C$) that are usually deployed for membrane fabrication. Thermogravimetric (TGA) and X-Ray diffraction (XRD) analysis were carried out to evaluate the effect of temperature on various phase transformations during sintering process. The effect of sintering temperature on structural integrity of the membrane as well as pore size distribution and average pore size were evaluated using scanning electron microscopy (SEM) analysis. The average pore sizes of the membranes were increased from 0.185 to $0.332{\mu}m$ with an increase in sintering temperature from 800 to $950^{\circ}C$. However, a subsequent reduction in membrane porosity (from 34.4 to 19.6%) was observed for these membranes. Permeation experiments with both water and air were carried out to evaluate various membrane morphological parameters such as hydraulic pore diameter, hydraulic permeability, air permeance and effective porosity. Later, the membrane prepared with a sintering temperature of $950^{\circ}C$ was tested for the treatment of synthetic oily waste water to verify its real time applicability. The membrane exhibited 98.8% oil rejection efficiency and $5.36{\times}10^{-6}\;m^3/m^2.s$ permeate flux after 60 minutes of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L oil concentration. Based on retail and bulk prices of the inorganic precursors, the membrane cost was estimated to be $220 /$m^2$ and $1.53 /$m^2$, respectively.

DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조 (Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구 (Corrosion Characteristics by CCPP Control in Simulated Distribution System)

  • 김도환;이재인;이지형;한동엽;김동윤;홍순헌
    • 대한환경공학회지
    • /
    • 제27권12호
    • /
    • pp.1249-1256
    • /
    • 2005
  • 본 연구에서는 pilot 정수처리 공정 내에서 pH, 총용존고형물(TDS), 알칼리도 및 칼슘경도 등을 조절하여 송 배 급수관내의 CCPP(Calcium Carbonate Precipitation Potential)를 생성시켰으며 이 생성된 수용액이 모의관로에서 어느 정도 부식방지 효과가 있는지를 조사하였다. CCPP로 조절된 처리수는 실제 송 배 급수시스템에 사용되고 있는 상수도 관망의 재질을 선택하여 모의관로(Simulated Distribution System, SDS) pilot plant를 만들어 운전하였다. 운전결과 $Ca(OH)_2$, $CO_2$ gas, $Na_2CO_3$ 등으로 수질을 조절한 모의관로와 조절하지 않은 매설관로에서의 CCPP 농도는 평균 0.61 mg/L 및 -7.77 mg/L로 많은 차이를 보였다. 또한 수질을 조절한 모의관로와 조절하지 않은 매설관로 유출수의 Fe, Zn, Cu 이온들의 분석결과 모의관로의 경우가 매설관로에 비해 중금속 농도변화가 크게 저감되었다. 모의관로에서 CCPP 조절에 의해 형성된 피막은 6개월이 경과한 이후에는 scale이 형성되었으며 시간이 경과할수록 보다 조밀하고 고르게 형성되는 것을 관찰할 수 있었다. 수질조절 후 형성된 방식 피막의 결정화합물 성분 및 구조를 파악하기 위해 아연도 강관 내벽에 형성된 scale의 XRD 분석을 실시하였다. 분석결과 10개월이 경과한 경우에는 $Zn_4CO_3(OH)_6{\cdot}H_2O$(Zinc Carbonate Hydroxide Hydrate)로 나타났으며 19개월이 경과한 후의 XRD 분석결과는 $CaCO_3$(Calcium Carbonate) 및 $ZnCO_3$(Smithsonite) 형태로 변화하는 것을 알 수 있었다.