• 제목/요약/키워드: real time object detection

검색결과 524건 처리시간 0.026초

실시간 영상에서 물체의 색/모양 정보를 이용한 움직임 검출 알고리즘 구현 (The motion estimation algorithm implemented by the color / shape information of the object in the real-time image)

  • 김남우;허창우
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2733-2737
    • /
    • 2014
  • 실시간 영상을 이용하여 움직임 검출을 하는데 사용하는 배경 차영상 기법에 의한 움직임 및 변화 영역 검출 방법과 움직임 히스토리에 의한 움직임 검출법, 광류에 의한 움직임 검출법, 움직임 추적을 위한 추적하려는 물체의 히스토그램의 역투영을 이용하면서 물체의 중심점을 추적하는 MeanShift와 물체의 중심, 크기, 방향을 함께 추적하는 CamShift, Kalman 필터에 의한 움직임 추적 알고리즘 등이 있다. 본 논문에서는 물체의 색상과 모양 정보를 이용한 움직임 검출 알고리즘을 구현하고 검증하였다.

적외선영상에서 배경모델링 기반의 실시간 객체 탐지 시스템 (Real-Time Object Detection System Based on Background Modeling in Infrared Images)

  • 박장한;이재익
    • 전자공학회논문지CI
    • /
    • 제46권4호
    • /
    • pp.102-110
    • /
    • 2009
  • 본 논문은 적외선영상(infrared image)에서 배경모델링 기반의 실시간 객체 탐지 기법과 고속 PPC(PowerPC) & FPGA(Field Programmable Gate Array) 기반 개방형 구조의 하드웨어 설계 방법을 제안한다. 개방형 구조는 하드웨어 및 소프트웨어의 이식이 용이하고, 확장, 호환성, 관리 및 유지보수 등이 편리한 장점이 있다. 제안된 배경모델링 방법을 개방형 구조에 탑재하기 위하여 입력영상에서 검색영역 템플릿을 성긴 블록으로 구성하여 탐색영역의 크기를 줄인다. 또한, 이전 프레임과 현재 프레임에서 영상의 흔들림이 발생했을 때 보정하기 위해 전역움직임 보상방법을 적용한다. 배경과 객체를 분리는 픽셀 밝기의 시간 분석을 통해 적응적 값을 적용한다. 분리된 객체주변에 발생하는 클러터 제거 방법은 중앙값 필터를 적용한다. 설계된 임베디드 시스템에서 배경모델링, 객체탐지, 중앙값 필터, 라벨링, 합병 등의 방법은 PPC에서 구현하였다. 실험결과 제안된 임베디드 시스템에서 전역 움직임 보정과 배경예측을 통해 실시간으로 객체가 탐지될 수 있음을 보였다.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

실시간 객체 모델 dRTO (Real-Time Object Model dRTO)

  • 이신;손혁수;양승민
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권3호
    • /
    • pp.300-312
    • /
    • 2000
  • 내장 실시간 시스템은 그 응용 분야가 매우 다양하며 그에 따라 실시간 처리와 신뢰도 보장에 대한 요구 또한 다양하다. 이러한 내장 실시간 시스템의 효율적인 개발과 실시간성 및 신뢰도 보장을 위해서는 적절한 실시간 모델이 필요하다. 최근 들어 객체지향 모델과 실시간 시스템을 접목시키는 실시간 객체 모델에 대한 연구가 활발하다. 본 논문에서 제안하는 dRTO (dependable Real-Time Object) 모델은 내장 실시간 시스템의 다양한 요구사항을 지원할 수 있도록 객체지향 개념, 실시간 개념, 신뢰성 개념 등을 단일 모델에 수용한다. 그리고 이 3 가지 기본 개념을 지원하기 위해서 5 가지 원시 클래스를 제공한다. dRTO 모델의 특징은 다음과 같다. 첫째, 객체의 시간 제약사항은 물론 객체 간의 상호작용과 관련된 시간 제약을 효율적으로 모델링하고 구현할 수 있도록 해준다. 둘째, 내장 시스템을 구성하는 하드웨어, 응용 소프트웨어, 커널 등을 하나의 틀 안에서 모델링할 수 있다. 셋째, 결함 감지 및 처리에 관해 명시적으로 표현할 수 있다.

  • PDF

다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 (Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials )

  • 권희준;이보희;정해영
    • 한국전기전자재료학회논문지
    • /
    • 제37권3호
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

비디오 모니터링 환경에서 정확한 돼지 탐지 (Accurate Pig Detection for Video Monitoring Environment)

  • 안한세;손승욱;유승현;서유일;손준형;이세준;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리 (Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding)

  • 김준기;이호석
    • 한국통신학회논문지
    • /
    • 제28권2C호
    • /
    • pp.147-161
    • /
    • 2003
  • 비디오 객체 분할(Video Object Segmentation)은 MPEG-4 부호화의 핵심기술로 실시간 요구사항을 위해 빠르고 정확하여야 한다. 그러나 대부분의 존재하는 알고리즘은 계산량이 많으며 실시간 응용을 위해 적합하지 않다. 또한 이전 MPEG-4 VM(Verification Model) 기본 모델은 MPEG-4 부호화 처리를 위한 기본 알고리즘을 제공하였으나 실시간 요구사항을 위한 카메라 입력 시스템, 실용적인 소프트웨어 개발, 비디오 객체 분할 그리고 압축효율에 많은 제한이 있다. 이에 본 논문은 기본 MPEG-4 VM모델에 내용 기반 비디오 코딩의 핵심인 VOP 추출알고리즘, 실시간 카메라 입력 시스템, 압축율을 높일 수 있는 움직임 감지 알고리즘을 추가하여 최대 180:1의 압축율을 보여주는 실시간 고압축 MPEG-4 전처리 시스템을 개발하였다.

Research on detecting moving targets with an improved Kalman filter algorithm

  • Jia quan Zhou;Wei Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2348-2360
    • /
    • 2023
  • As science and technology evolve, object detection of moving objects has been widely used in the context of machine learning and artificial intelligence. Traditional moving object detection algorithms, however, are characterized by relatively poor real-time performance and low accuracy in detecting moving objects. To tackle this issue, this manuscript proposes a modified Kalman filter algorithm, which aims to expand the equations of the system with the Taylor series first, ignoring the higher order terms of the second order and above, when the nonlinear system is close to the linear form, then it uses standard Kalman filter algorithms to measure the situation of the system. which can not only detect moving objects accurately but also has better real-time performance and can be employed to predict the trajectory of moving objects. Meanwhile, the accuracy and real-time performance of the algorithm were experimentally verified.

적응적 배경영상을 이용한 교차로 내 정지 객체 검출 방법 (Stop Object Method within Intersection with Using Adaptive Background Image)

  • 강성준;서암석;정성환
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2430-2436
    • /
    • 2013
  • 본 논문에서는 교차로 내에 위험의 원인이 되는 정지 객체를 검지하는 방법을 제안한다. 교차로 내에 설치된 CCTV에서 실시간 영상을 입력받아 객체의 크기를 일정하게 하기 위하여 역원근변환을 수행하였다. 원근변환된 영상에서 검지영역을 설정하고 객체의 이동 정보를 이용한 적응적인 배경영상을 생성하였다. 정지한 객체의 검출은 배경영상 차이법을 사용하여 정지한 객체의 후보 영역을 검출하였다. 검출된 후보 영역의 진위 여부를 파악하기 위하여 영상의 기울기 정보와 EHD(Edge Histogram Descriptor)를 이용하는 방법을 제안한다. 제안한 알고리즘의 성능을 알아보기 위하여 교차로에 설치된 DVR을 통해 출퇴근 시간 및 주간 대의 영상을 저장하여 실험하였다. 실험 결과 교차로 내의 검지영역 내에 정지한 차량을 효율적으로 감지할 수 있었으며 검지영역의 면적에 따라 초당 13~18프레임의 처리속도를 나타내어 실시간 처리에 문제가 없을 것으로 판단된다.

동적 물체의 비전 검출을 통한 이동로봇의 장애물 회피 (Mobile Robot Obstacle Avoidance using Visual Detection of a Moving Object)

  • 김인권;송재복
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.212-218
    • /
    • 2008
  • Collision avoidance is a fundamental and important task of an autonomous mobile robot for safe navigation in real environments with high uncertainty. Obstacles are classified into static and dynamic obstacles. It is difficult to avoid dynamic obstacles because the positions of dynamic obstacles are likely to change at any time. This paper proposes a scheme for vision-based avoidance of dynamic obstacles. This approach extracts object candidates that can be considered moving objects based on the labeling algorithm using depth information. Then it detects moving objects among object candidates using motion vectors. In case the motion vectors are not extracted, it can still detect the moving objects stably through their color information. A robot avoids the dynamic obstacle using the dynamic window approach (DWA) with the object path estimated from the information of the detected obstacles. The DWA is a well known technique for reactive collision avoidance. This paper also proposes an algorithm which autonomously registers the obstacle color. Therefore, a robot can navigate more safely and efficiently with the proposed scheme.

  • PDF