• Title/Summary/Keyword: real time interactive

Search Result 428, Processing Time 0.032 seconds

Development of Interactive Video Using Real-time Optical Flow and Masking (옵티컬 플로우와 마스킹에 의한 실시간 인터렉티브 비디오 개발)

  • Kim, Tae-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.98-105
    • /
    • 2011
  • Recent advances in computer technologies support real-time image processing and special effects on personal computers. This paper presents and analyzes a real-time interactive video system. The motivation of this work is to realize an artistic concept that aims at transforming the timeline visual variations in a video of sea water waves into sound in order to provide an audience with an experience of overlapping themselves onto the nature. In practice, the video of sea water waves taken on a beach is processed using an optical flow algorithm in order to extract the information of visual variations between the video frames. This is then masked by the silhouette of an audience and the result is projected on a gallery space. The intensity information is extracted from the resulting video and translated into piano sounds accordingly. This work generates an interactive space realizing the intended concept.

End-to-End Resource Management Techniques for Supporting Real-time Tasks in Mobile Devices (모바일 기기의 실시간 작업 지원을 위한 종단간 자원 관리 기술)

  • Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • With the recent performance improvement of mobile devices as well as the emergence of various applications, not only interactive tasks but also real-time tasks are rapidly increasing. As real-time tasks have deadline requirements, resource management policies used in the conventional time-sharing systems have limitations in satisfying real-time constraints. In this paper, we examine how to efficiently manage resources while satisfying the constraints of real-time tasks through end-to-end resource management of CPU, memory, and storage when interactive and real-time tasks are executed concurrently on a mobile device. Instead of suggesting complicated resource management policies, we focus on examining the basic concepts necessary for each resource management. Specifically, we first look at basic policies such as assigning dedicated CPU cores for real-time tasks, allocating a certain working set of real-time tasks in memory, and using fast storage without context switch in I/O. We then consider how these basic policies can be adopted efficiently.

Matlab Implementation of Real-time Speech Analysis Tool (실시간 음성분석도구의 MatLab 구현)

  • Bak Il-suh;Kim Dae-hyun;Jo Cheol-woo
    • MALSORI
    • /
    • no.44
    • /
    • pp.93-104
    • /
    • 2002
  • There are many speech analysis tools available. Among them real-time analysis tool is very useful for interactive experiments. A real-time speech analysis tool was implemented using Matlab. Matlab is a very widely used general purpose signal processing tool. In general, its computational speed is relatively lower than that of the codes from conventional programming languages. Especially, real-time analysis including input of signal and output of the result was not possible in the past. However, due to the improvement of computing power of PCs and inclusion of real-time I/O toolboxes in Matlab, real-time analysis is now possible in some extent by Matlab only. In this experiment, we tried to implement a real-time speech analysis tool using Matlab. Pitch and spectral information is computed in real-time. From the result it is shown that such real-time applications can be implemented easily using Matlab.

  • PDF

Real-time Interactive Animation System for Low-Priced Motion Capture Sensors (저가형 모션 캡처 장비를 이용한 실시간 상호작용 애니메이션 시스템)

  • Kim, Jeongho;Kang, Daeun;Lee, Yoonsang;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.29-41
    • /
    • 2022
  • In this paper, we introduce a novel real-time, interactive animation system which uses real-time motion inputs from a low-cost motion-sensing device Kinect. Our system generates interaction motions between the user character and the counterpart character in real-time. While the motion of the user character is generated mimicking the user's input motion, the other character's motion is decided to react to the user avatar's motion. During a pre-processing step, our system analyzes the reference motion data and generates mapping model in advance. At run-time, our system first generates initial poses of two characters and then modifies them so that it could provide plausible interacting behavior. Our experimental results show plausible interacting animations in that the user character performs a modified motion of user input and the counterpart character properly reacts against the user character. The proposed method will be useful for developing real-time interactive animation systems which provide a better immersive experience for users.

Real-time Interactive Control of Magnetic Resonance Imaging System Using High-speed Digital Signal Processors (고속 DSP를 이용한 실시간 자기공명영상시스템 제어)

  • 안창범;김휴정;이흥규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.341-349
    • /
    • 2003
  • A real time interactive controller (spectrometer) for magnetic resonance imaging (MRI) system has been developed using high speed digital signal processors (DSP). The controller generates radio frequency (rf) waveforms and audio frequency gradient waveforms and controls multiple receivers for data acquisition. By employing DSPs having high computational power (e.g., TMS320C670l) real time generation of complicated gradient waveforms and interactive control of selection planes are possible, which are important features in real-time imaging of moving organs, e.g., cardiac imaging. The spectrometer was successfully implemented at a 1.5 Tesla whole body MRI system for clinical application. Performance of the spectrometer is verified by various experiments including high- speed imaging such as fast spin echo (FSE) and echo planar imaging (EPI). These high-speed imaging techniques reduce measurement time, however, usually intensify artifact if there is any systematic phase error or jitter in the synchronization between the transmitter, receiver, and gradients.

Interactive 3D Pattern Design Using Real-time Pattern Deformation and Relative Human Body Coordinate System (실시간 패턴 변형과 인체 상대좌표계를 이용한 대화형 3D 패턴 디자인)

  • Sul, In-Hwan;Han, Hyun-Sook;Nam, Yun-Ja;Park, Chang-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.582-590
    • /
    • 2010
  • Garment design needs an iterative manipulation of 2D patterns to generate a final sloper. Traditionally there have been two kinds of design methodologies such as the flat pattern method and the pattern draping method. But today, it is possible to combine the advantages from the two methods due to the realistic cloth simulation techniques. We devised a new garment design system which starts from 3D initial drape simulation result and then modifies the garment by editing the 2D flat patterns synchronously. With this interactive methodology using real-time pattern deformation technique, the designer can freely change a pattern shape by watching its 3D outlook in real-time. Also the final garment data were given relative coordinates with respect to the human anthropometric feature points detected by an automatic body feature detection algorithm. Using the relative human body coordinate system, the final garments can be re-used to an arbitrary body data without repositioning in the drape simulation. A female shirt was used for an example and a 3D body scan data was used for an illustration of the feature point detection algorithm.

Face-to-face Communication in Cyberspace using Analysis and Synthesis of Facial Expression

  • Shigeo Morishima
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.111-118
    • /
    • 1999
  • Recently computer can make cyberspace to walk through by an interactive virtual reality technique. An a avatar in cyberspace can bring us a virtual face-to-face communication environment. In this paper, an avatar is realized which has a real face in cyberspace and a multiuser communication system is constructed by voice transmitted through network. Voice from microphone is transmitted and analyzed, then mouth shape and facial expression of avatar are synchronously estimated and synthesized on real time. And also an entertainment application of a real-time voice driven synthetic face is introduced and this is an example of interactive movie. Finally, face motion capture system using physics based face model is introduced.

A Study on the Interconnection Technology between Tablet Device and Interactive White Board System (태블릿 기기와 전자칠판 시스템 간의 연동 기술 연구)

  • Choi, Yun-Su;Hwang, Min-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1719-1727
    • /
    • 2015
  • In this paper we have studied about the interconnection technology between tablet device and interactive white board(IWB) system. For this study we have implemented the board writing software for both tablet device and interactive white board system which has contents management, page turning and basic writing functions. Then we defined the data format to communicate the control information and board writing information between two devices, and implemented the communication module for the real-time bidirectional communication by using the Socket programming. The page turning or writing information on tablet device were transferred to the IWB system in real-time and vice versa. From the result of performance test based on the error rate, latency time and communication coverage we derived that our implementation software has good performance between tablet device and IWB system. Also from the result of field test we proved that our solution is well suitable to use in real education environment.