Browse > Article

Real-time Interactive Control of Magnetic Resonance Imaging System Using High-speed Digital Signal Processors  

안창범 (광운대학교 전기공학과)
김휴정 (광운대학교 전기공학과)
이흥규 ((주)아이솔테크놀로지)
Publication Information
Abstract
A real time interactive controller (spectrometer) for magnetic resonance imaging (MRI) system has been developed using high speed digital signal processors (DSP). The controller generates radio frequency (rf) waveforms and audio frequency gradient waveforms and controls multiple receivers for data acquisition. By employing DSPs having high computational power (e.g., TMS320C670l) real time generation of complicated gradient waveforms and interactive control of selection planes are possible, which are important features in real-time imaging of moving organs, e.g., cardiac imaging. The spectrometer was successfully implemented at a 1.5 Tesla whole body MRI system for clinical application. Performance of the spectrometer is verified by various experiments including high- speed imaging such as fast spin echo (FSE) and echo planar imaging (EPI). These high-speed imaging techniques reduce measurement time, however, usually intensify artifact if there is any systematic phase error or jitter in the synchronization between the transmitter, receiver, and gradients.
Keywords
Spectrometer; Digital signal processor (DSP); Magnetic resonance imaging (MRI); Gradient; High speed imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.B. Ahn, J.H. Kim, Z.H. Cho, 'High-speed spiral-scan echo planar NMR imaging-I,' IEEE Trans. Med. Imag., vol. 5, pp.1-6, 1986   DOI
2 M. Mosley, K. Butts, M. Yenari, M. Marks, A.D. Crespigny, 'Clinical aspects of DWI,' NMR Biomed., vol. 8, pp.387-396, 1996   DOI   ScienceOn
3 F. Schmitt, M.K. Stehling, R. Turner, Echo-Planar Imaging: Theory, Technique and Application, Springer, 1998
4 C.B. Ahn, S.Y. Lee, O. Nalcioglu, Z.H. Cho, 'An Improved nuclear magnetic resonance diffusion coefficient imaging method using an optimized pulse sequence,' Med. Phys., vol. 13, pp. 789-793, 1986   DOI   ScienceOn
5 PCI 9080 data book, PLX Tech, 1998
6 TMS320C6x User's guide, Texas Instruments, 2000
7 P.C. Lauterbur, 'Image formation by induced local interactions : Examples employing NMR,' Nature, vol. 242, pp.190-191, 1973   DOI
8 T.C. Farrar, E.D. Becker, Pulse and Fourier transform NMR-introduction and theory and methods, Acamedic Press, 1971
9 P. Mansfield, P.G. Morris, NMR imaging in biomedicine, Academic Press, 1982
10 S. Ogawa, T-M Lee, A.R. Kay, D.W. Tank, 'Brain magnetic resonance imaging with contrast dependent on blood oxygenation,' Proc. Natl. Acad. Sci. (USA) vol. 87, pp.9868-9872, 1990   DOI   ScienceOn
11 D.A. Herzka, P. Kellman, A.H. Aletras, M.A. Guttman, E.R. McVeigh, 'Multishot EPI-SSFP in the heart,' Magn. Reson. Med. vol. 47, pp. 655-664, 2002   DOI   ScienceOn
12 C.B. Ahn, S.Y. Lee, O. Nalcioglu, Z.H. Cho, 'The effects of random directional distributed flow in nuclear magnetic resonance imaging,' Med. Phys., vol. 14, pp. 43-48, 1987   DOI   ScienceOn
13 고광혁, 권의석, 김치영, 김휴정, 김상묵, 안창범, 'DSP를 이용한 자기 공명 영상시스템의 경사자계 파형 발생기', 대한전기학회 논문지, pp.48-53, 2000
14 S. Naruse, H. Watari, Ultrafast magnetic resonance imaging in medicine, Elsevier, 1999
15 G.K. Schulthess, J. Hennig, Functional imaging:principles and methodology, pp. 261-390, 1997
16 C.H. Meyer, B.S. Hu, D.G. Nishimura, A. Macovski, 'Fast Spiral coronary artery imaging,' Magn. Reson. Med., vol.28. pp. 202-213, 1992   DOI
17 P. Mansfield, 'Multi-planar image formation using NMR spin echoes,' J. Phys. C, vol. 10, pp. 155-158, 1977
18 J. Hennig, A. Naureth, H. Friedburg, 'RARE imaging: A fast imaging method for clinical MR,' Magn. Reson. Imag., Vol. 3, pp.823-833, 1986   DOI   ScienceOn