This study attempts to suggest an economic analysis model for SNG projects, which can reflect the future uncertainty objectively and applies the real option valuation incorporating the flexible investment decision. Based on this analysis model, net present value and internal rate of return were estimated by using preliminary feasibility study report of SNG project. And economic evaluation of SNG project was performed with real option valuation using binomial option model. Through this, the difference of analysis results between the real option valuation model and the discounted cash flow model were compared and the usefulness of the real option valuation model was confirmed. From the actual proof analysis, it is confirmed that the real option valuation model showed higher SNG project value than the discounted cash flow model did. It was confirmed that by applying the real option valuation model, economic analysis can be performed on not only the current straightforward SNG project, but also various future portfolios having options such as expansion, modification, or decommission.
This paper provides economic analysis for a residential photovoltaic (PV) power system of 5 districts in China and Thailand, using SAM (System Advisor Model) data. Unlike existing literature, the analysis is conducted from the investment timing perspective, as applying to a real option model which can incorporate the cost uncertainty of the PV system and a resident's option to delay the investment. This study shows that the gap of optimal investment times between a real option model and a generally used net present value model ranges from about 6 to 14 years. Also, we found a contracting result for a particular district that, while the investment is appropriate according to the net present value model, it is more reasonable to delay the PV system investment in terms of the real option model.
In traditional financial theory, the discount cash flow model(DCF or NPV) operates as the basic framework for most analyses. In doing valuation analysis, the conventional view is that the net present value(NPV) of a project is the measure of the present value of expected net cash flows. Thus, investing in a positive(negative) NPV project will increase(decrease) firm value. Recently, this framework has come under some fire for failing to consider the options of the managerial flexibilities. Real option valuation(ROV) considers the managerial flexibility to make ongoing decisions regarding the implementation of investment projects and the deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real assets based on the Black-Sholes option pricing model, the binomial option pricing model, and the Monte Carlo simulation. This paper uses those models to obtain point estimates of real option value with the G7- HSR350X(high-speed train).
Many technology investment projects can be considered as set of sequential options. A compound real option can be used for evaluating sequential technology investment decisions under significant uncertainty and measuring its value. In this paper, the formula developed by Geske and Johnson(1984) and Buraschi and Dumas(2001) was applied to evaluate the technology investment with related double real option. Also double real option was com-pared with net present value method and multiple linear regression model was used to assess the partial effects of risk free rate and log-term volatility on its value.
In recent research there has been intense interest in understanding how real option valuation (ROV) approaches might usefully complement conventional discounted cash flow (DCF) techniques. However, investment decision makers in a real world have been worried about adopting the ROV approaches mainly because of difficulty in technically understanding the theory of the ROV approaches as indicated by many researchers. With this difficulty in mind, we propose the opportunity cost model as another discrete-time model to value a deferral option. The main advantage of observing a real options value in terms of the opportunity cost concept is to provide a technique for practitioners to estimate a wide range of real options values without sticking to a financial option modelling. The fundamental ground for developing the opportunity cost model proposed in this paper lies in the work of dissecting the structure of the real options value into three categories: capital gain, expected opportunity loss, and expected opportunity gain. At the end of the paper, we will present a short illustrative example to demonstrate the applicability of the model.
This study presents a new real estate value analysis model considering the changes in the population structure. We propose a new model that takes advantage of the binomial option model one of the techniques of real options and considers the changes in the population structure. The real estate market price data of Seoul city from year 2001 to 2012 were extracted and the correlation analysis between real estate prices and changes in the population structure was performed. The result shows that they have positive correlation with one year time lag. The coefficient between the real estate prices and demographic changes was estimated using the OLS analysis and included in the traditional binomial option model to calculate the value of the property. It is assumed for the future price prediction that real estate invested in Seoul in January, 2013 will be sold within five years. Analysis result shows that the values of real estate in September of 2013 were predicted as 583.5 million won in the new model and as 582.4 million won in the traditional model. This reflects that the new model considering the change of population change gives better realistic performance than the traditional one.
Real option valuation considers the managerial flexibility to make ongoing decisions regarding implementation of investment projects and deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real asset based on Monte Carlo simulation. This research uses a binomial model to obtain point estimate of real option value with embedded expansion option case and provides also an array of numerical results to show the interval estimation of option value using Monte Carlo simulation.
IS outsourcing has an important meaning to the Korean SME's (Small and Medium Enterprises) which want to use the IS Services. The objective of this research is to manage IT risks occurred during IS outsourcing project process. This study tries to identify these risks using real option methodology. In order to perform this objective, this study set up the research model which is composed of two main concepts. The first one is the risk factors occurred during IS outsourcing project process: User's Risks, Supplier's Risks and Transaction's Risks. All of these risks are based on Transaction Cost Theory. The second one is the intention to get (or buy) Real Options to manage the risks. In the research model, two types of real option are included: option to abandon (put option) and option to defer (call option). This study uses questionnaires and statistics methodology (PLS) to analyze the hypotheses proposed in the research model. Compared with prior studies, this study is different in two ways. First, this study restricts the range of IT risks. Prior researches of IT Risk management in MIS area cover various range of IT risks, but this study focuses on the Korean SME's IT outsourcing risks on the basis of Transaction Cost Theory. This study tests the relationship between the risks and real option types. Second, this study tries to test the moderating effect of user's risks and supplier's risks on the relationship between transaction's risks and real option types. In IT outsourcing research area, almost studies focus on the direct relationships between IT risks and outsourcing success. But in reality, the co-relationship among IT risks may occur. There are some findings according to the research analysis. First, risks related with user's risks have strong causal relationships with the intention to get option to abandon (put) and option to defer. But risks related with supplier's risks have causal relationships only with option to abandon (put). Second, user's risks and supplier's risks have no moderating effect on the relationship between transaction's risks and real option types. According to the research results, this research have some important and interesting implications on the IS outsourcing business area. First, this study identifies the effective types of real option to minimize the risks occurred during the IT outsourcing projects. So IS outsourcing service users can manage (or minimize) effectively the risks, which occurred during outsourcing projects, using real options. Second, real option gives benefits to suppliers and users at the same time (i.e., win-win strategies between IS outsourcing service providers and users). Vendors (:IS outsourcing service providers) can offer users the real options which can minimize the occurrence of risks in time. "IN TIME" means that before the IS outsourcing project starts, vendors can offer users the opportunity to buy real options in appropriate prices to manage the possibility of the risks of IS outsourcing project. And users also have chance to minimize the IT outsourcing risks occurred during the project process using real options.
Purpose - Aging and fewer economically active people have challenged the assumption of continuous population increases. A new real estate valuation methodology reflecting changes in population structure is thus needed. Research design, data, and methodology - The relationship between demographic change and changes in real estate prices is analyzed using ordinary least squares (OLS) to estimate the parameters, and a population structure change (PSC)-Binomial Option Model is developed to assess the volatility of the estimated parameters. Results based on Seoul and Shanghai data are compared. Results - Results of the DCF method indicate that investing in Seoul is better than investing in Shanghai, but the binomial option indicates the opposite. The PSC-binomial option model, reflecting changes in population structure, yields higher values (24.6 million won in Seoul and 43.3 million won in Shanghai) than those given by the binomial option model. Conclusions - This study indicates that applying changes in population structure to existing research, such as in the binomial option model, represents a more accurate real estate valuation method. Results demonstrate that the new model is more accurate than existing models such as the DCF or binomial option.
Proceedings of the Korea Technology Innovation Society Conference
/
2001.11a
/
pp.307-337
/
2001
In this paper, we propose the valuation frame of the IT(Information Technology) ventures using ROV(Real Options Valuation) model. Generally, ROV can comprises the traditional valuation method such as DCF(Discounted Cash Flow), which can measure only the tangible value of a firm from the expected future earnings, in that ROV can additionally measure the intangible value such as the strategic value of a firm in the uncertain environment. We set up the hypothetic IT venture future investment plan and assume that there are a growth option and a switching option consequently along the investment time horizon, which are caused by each characteristics of ventures and IT technologies, especially modularity. In the case that there are several embedded real options in the firm's investment plan in a row, we should apply the compound option pricing model as a real option valuation model in order to consider the value interaction between real options. In an addition, we present the results of optimal investment timing analysis using real options approach and compare them. with those of the original assumed investment timing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.