• Title/Summary/Keyword: real element

Search Result 1,387, Processing Time 0.027 seconds

Finite Element Analysis of the Thin-Walled Beam with Arbitrary Cross Section (임의 형상의 단면을 갖는 박판보의 유한요소 해석)

  • Yang, Woong-Pill;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.100-114
    • /
    • 1996
  • In this paper, a new thin-walled beam finite elcment is developed to overmome the difficulties in the analysis of real structures by existing beam elements. The element is formulated by extending Benscoter's assumption and also by adopting the concept of the curvature-based element. It is applicable to the analysis of the beams with arbitrary cross-sectional shapes. The results obtained show that the element is locking-free and the accuracy of the finite element solutions is remarkably improved.

NEW BOUNDS FOR FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FIELDS

  • Isikay, Sevcan;Pekin, Ayten
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1149-1161
    • /
    • 2021
  • In this paper, we present new bounds on the fundamental units of real quadratic fields ${\mathbb{Q}}({\sqrt{d}})$ using the continued fraction expansion of the integral basis element of the field. Furthermore, we apply these bounds to Dirichlet's class number formula. Consequently, we provide computational advantages to estimate the class numbers of such fields. We also give some numerical examples.

Experimental analysis on FEM definition of backfill-rectangular tank-fluid system

  • Cakir, Tufan;Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.165-185
    • /
    • 2013
  • In the present study, the numerical and experimental investigations were performed on the backfill- exterior wall-fluid interaction systems in case of empty and full tanks. For this, firstly, the non-linear three dimensional (3D) finite element models were developed considering both backfill-wall and fluid-wall interactions, and modal analyses for these systems were carried out in order to acquire modal frequencies and mode shapes by means of ANSYS finite element structural analysis program. Secondly, a series of field tests were fulfilled to define their modal characteristics and to compare the results from proposed approximation in the selected structures. Finally, comparing the theoretical predictions from the finite element models to results from experimental measurements, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verifications provide strong support for the finite element models and the proposed procedures themselves are the meritorious approximations to the real problem, and this makes the models appealing for use in further investigations.

A Study of Developing Stamping Die by Using One-Step Form Method in Auto-Body Panel Stamping Process (차체 판넬 스템핑 공정에서 One-step Form 해석방법을 이용한 금형개발에 관한 연구)

  • Hwang Jae Sin;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.350-359
    • /
    • 2005
  • Finite element method is a very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate die model is required. Among finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. This study is about analyzing the stamping process problems by using AutoForm commercial software which used static-implicit method. According to this study, the results of simulation will give engineers good information to access the die design of optimization.

A Study for Stress Distribution of the High-voltage Transmission Tower Under Wind Forces (풍하중이 작용하는 고용량 송전철탑의 해석을 통한 응력 분포 고찰)

  • Chang, Jin-Won;Kim, Seung-Jun;Park, Jong-Sub;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.75-78
    • /
    • 2007
  • The structural methodology in designing a transmission tower have been performed to assume a simple truss behavior. But there're quite differences between a simple truss behavior and a real one. A suitable explanation for a structural stability can be expressed as a semi-rigid connection instead of the assumed hinged connection. This study proposes an alternative structural analysis modelling strategy for the transmission tower design. Proposed element models are truss element model, beam element model, and combined beam-truss element model. The static finite element analysis shows that there's a moment distribution between a mainpost member and the other bracing member.

  • PDF

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

Experimental identification of nonlinear model parameter by frequency domain method (주파수영역방법에 의한 비선형 모델변수의 실험적 규명)

  • Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.

Fatigue Strength Evaluation of Bogie Frame for Power Car (동력차용 대차프레임의 피로강도평가)

  • Lee, Hak-Ju;Han, Seung-U;Augagneur Sylvain;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF