• 제목/요약/키워드: reactor vessel internals

검색결과 58건 처리시간 0.033초

원자로 내부배럴집합체 상부면 측정위치 선정 (Selection of Measurement Locations at Inner Barrel Assembly Top Plate in the Reactor)

  • 고도영;김규형;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.734-738
    • /
    • 2012
  • A comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals is established in accordance with the United States Nuclear Regulatory Commission Regulatory Guide 1.20 Revision 3. This paper is related to instruments and measurement locations based on the vibration and stress response analysis results at the inner barrel assembly top plate in the reactor. The analysis results of the inner barrel assembly top plate in the reactor show that the deterministic stress and deformation due to the reactor coolant pump induced pressure pulsations are larger than the random stress and deformation induced by the flow turbulence. The selection of the instruments and measurement locations at Inner barrel assembly top plate in the reactor is essential requirements and very important study process for the vibration and stress measurement program in comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals.

  • PDF

APR1400 내부배럴집합체 상부판 구조해석 및 측정위치 (Structural Analysis and Response Measurement Locations of Inner Barrel Assembly Top Plate in APR1400)

  • 고도영;김규형;김성환
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.474-479
    • /
    • 2012
  • A comprehensive vibration assessment program for the advanced power reactor 1400(APR1400) reactor vessel internals is established in accordance with the united states nuclear regulatory commission regulatory guide 1.20 revision 3. This paper is related to instruments and measurement locations based on the vibration and stress response analysis results of the inner barrel assembly top plate in APR1400. The analysis results of the inner barrel assembly top plate in the reactor show that the deterministic stress and deformation due to the reactor coolant pump induced pressure pulsations are larger than the random stress and deformation induced by the flow turbulence. The selection of the instruments and measurement locations at inner barrel assembly top plate in the reactor is essential requirements and very important study process for the vibration and stress measurement program in comprehensive vibration assessment program for APR1400 reactor vessel internals.

APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법론 검증 (Validation of Vibration and Stress Analysis Methodology for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program)

  • 김규형;고도영;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.300-305
    • /
    • 2012
  • The vibration and stress analysis program of comprehensive vibration assessment program (CVAP) is to verify theoretically the structural integrity of reactor vessel internals (RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the verification of the vibration and stress analysis methodology of APR1400 RVI CVAP. The analysis methodology was developed to use 3-dimensional hydraulic and structural models with ANSYS and CFX. To validate the methodology, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the calculated and measured data in the OPR1000 RVI CVAP. Since the results predicted with this methodology were close to the measured values considerably, it was confirmed that the analysis methodology was developed properly.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

원자로 내부구조물의 동특성 및 결함해석 (The Dynamic Characteristics and Defect Analysis of Pressurized Water Reactor Internals)

  • 안창기;박진호;이정한;최영철;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.267-270
    • /
    • 2005
  • Finite element model of pressurized water reactor internals were obtained using ANSYS software package to analyze dynamic characteristics. The pressure vessel, hold-down ring, alinement key, core support barrel(CSB), upper guide structure(UGS) and fluid gap were fully modeled using structural solid element(SOLID45) and fluid element(FLUID80) which is one of element types. Also modal analysis using the above finite element model has been performed. As a result, it was found that the fundamental beam mode natural frequency of the CSB were 8.2 Hz, the shell mode one 14.5 Hz. To verify the Finite Element Analysis(FEA), we compare the analysis result with experimental data that is obtained from the plant IVMS(internal Vibration Monitoring System). The experimental results are good agreement with the FEA model.

  • PDF

Systems Engineering Method to Develop Multiple BMI Nozzle Inspection System for APR1400

  • Abdallah, Khaled Atya Ahmed;Nam, GungIhn
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.25-40
    • /
    • 2016
  • The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. In this study, the SE methodology is used to design a nondestructive inspection system for Bottom Mounted Instrumentation (BMI) nozzles. We developed a system that enables nondestructive inspection of BMI nozzles during regular refueling outage without removing the reactor internals. A special ultrasonic (UT) probe is introduced to scan and detect cracks within the weld region of the nozzle. A 3D model of the inspection structure system was developed along with the reactor pressure vessel (RPV) and internals which permits a virtual 3D simulation of the operation to check the design concept and effectiveness of the system and to provide a good visualization of the system. This approach allows for a virtual walk through to verify the proposed BMI nozzle inspection system.

APR1400 원자로 내부구조물 종합진동평가프로그램용 측정센서 검토 (A Review of Measuring Sensors for Reactor Vessel Internals Comprehensive Vibration Assessment Program in Advanced Power Reactor 1400)

  • 고도영;이재곤
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.47-55
    • /
    • 2011
  • Reactor vessel internals comprehensive vibration assessment program(RVI CVAP) is one of the necessary tests to ensure the safety of nuclear power plants. RVI CVAP of U.S. nuclear regulatory commission regulatory guide 1.20(U.S. NRC R.G. 1.20) consists of the analysis, measurement and inspection. One of the core technologies of the measurement program for RVI CVAP is to select suitable sensors because the measurement is conducted during the critical path of the construction period of nuclear power plants. Therefore, we analyzed RVI thermal-hydraulic and structure design data of Palo Verde nuclear power plant(U.S.), Yonggwang nuclear power plant(Korea) and APR1400 and researched measuring sensors used in them; moreover, we investigated sensors used for measurement of RVI CVAP for the last 20 years throughout the world. Based on these results, we selected suitable measuring sensors for RVI CVAP in advanced power reactor 1400(APR1400).

원자로 노심 쉬라우드의 조사유기응력부식균열 민감도 예비 분석 (Preliminary Analysis on IASCC Sensitivity of Core Shroud in Reactor Pressure Vessel)

  • 김종성;박창제
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.58-63
    • /
    • 2019
  • This paper presents preliminary analysis and results on IASCC sensitivity of a core shroud in the reactor pressure vessel. First, neutron irradiation flux distribution of the reactor internals was calculated by using the Monte Carlo simulation code, MCNP6.1 and the nuclear data library, ENDF/B-VII.1. Second, based on the neutron irradiation flux distribution, temperature and stress distributions of the core shroud during normal operation were determined by performing finite element analysis using the commercial finite element analysis program, ABAQUS, considering irradiation aging-related degradation mechanisms. Last, IASCC sensitivity of the core shroud was assessed by using the IASCC sensitivity definition of EPRI MRP-211 and the finite element analysis results. As a result of the preliminary analysis, it was found that the point at which the maximum IASCC sensitivity is derived varies over operating time, initially moving from the shroud plate located in the center of the core to the top shroud plate-ring connection brace over operating time. In addition, it was concluded that IASCC will not occur on the core shroud even after 60 years of operation (40EFPYs) because the maximum IASCC sensitivity is less than 0.5.