• Title/Summary/Keyword: reactor material

Search Result 831, Processing Time 0.031 seconds

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of Raw Material Resin to Produce Fuel-Oil from Waste Vinyl (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • The effects of zeolite type catalysts addition on the thermal decomposition of low density polyethylene(LDPE) and ethylene vinyl acetate(EVA) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The zeolite type catalysts tested were natural zeolite, FCC catalyst, used FCC catalyst, and catalyst A. As the results of TGA experiments, addition of antifogging-agent decreased the pyrolysis point to $250^{\circ}C$, but addition of longevity-agent and clay reduced the pyrolysis rate in EVA resin. Addition of the zeolite type catalysts in the LDPE resin increased the pyrolysis rate in the order of catalyst A > used FCC catalyst > natural zeolite > LDPE resin. Addition of the zeolite type catalysts in the EVA resin increased the pyrolysis rate in the order of used FCC catalyst > natural zeolite > catalyst A > EVA resin. In the DSC experiments for LDPE resin, addition of zeolite type catalysts decreased the melting point and the heat of pyrolysis reaction in the order of catalyst A > used FCC catalyst > natural zeolite> LDPE resin. In the batch system experiments, the mixing of natural zeolite enhanced the yield of liquid fuel oil.

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell (산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향)

  • Song, Young-Chae;Kim, Dae-Seop;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property (기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성)

  • Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Shon, Jeong-Kuk;Kwon, Sun-Sang;Boo, Jin-Hyo;Kim, Ji-Man
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.328-332
    • /
    • 2010
  • In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, $N_2$-sorption and $H_2$-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments (자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가)

  • Oh, Youn Soo;Park, Hyun Sung;Kim, Dong Kwan;Lee, Jin Soo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.235-244
    • /
    • 2020
  • Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.

Neutron fluence measurement at HANARO using fluence monitor method (Fluence Monitor를 이용한 HANARO 노심 내 중성자 플루언스 측정)

  • Lee, Seung-Kyu;Jo, Kwang-Ho;Choo, Kee-Nam;Park, Jin-Suk;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.200-208
    • /
    • 2011
  • The neutron fluence measurement and evaluation technology is very important for material irradiation test. The most essential technology in this study is the neutron irradiation evaluation method using a fluence monitor. The fluence monitors were fabricated with metal wires of the purity ${\geq}$ 99.9%, whose dimensions were 0.1mm diameter, about 3 mm length, and around 150-200 ${\mu}g$ mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. After irradiation tests, radiation activities were measured with the high purity germanium (HPGe) detector. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position.

Risk Perception of the Firefighters Responsible for Nuclear Power Plants: Construct Validity (원자력발전소 화재에 대한 관할 지역 소방관의 위험인식: 측정도구의 개발과 타당화)

  • Choi, HaeYoun;Lee, SangKyu;Choi, Jong-An
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.94-102
    • /
    • 2019
  • As the importance of first responses for fire accidents has grown in the safety management of nuclear power plants, a systematic approach to measure firefighters' psychological states and competence is needed. The current study investigated the construct of the risk perception of the firefighters working near nuclear power plant sites, and then developed and validated a new scale to measure firefighters' risk perception regarding nuclear power plant accidents. The scale items were developed on the basis of literature review and interviews with the firefighters working near nuclear power plant sites. In order to validate the new scale, we recruited 180 firefighters from five fire stations in the vicinity of the nuclear power plants in Jeonnam Province, Gyeongbuk Province, and Busan. The results of exploratory factor analyses revealed that the scale consisted of five factors: "manual" reflecting a lack of response guidelines and manuals for fire incidents and radioactive material release; "fear" reflecting a fear of fire incidents in the nuclear power plants and their catastrophic consequences; "resource" reflecting a lack of protective equipment and manpower for responding to fire incidents in the nuclear power plants; "trust" reflecting trust and cooperation with the counterpart institutions for firefighting in the nuclear power plants; and "knowledge" reflecting the knowledge of radioactivity and firefighting in the nuclear power plants. Further analyses provided statistical evidence supporting for the 15-item scale's internal consistency and construct validity. Finally, We discussed the implication and limitations of the current research.

Optimum Mixing Ratio of Bulking Agent for Garbage Composting (음식쓰레기 퇴비화시 bulking agent의 적정 첨가량 결정에 관한 연구)

  • Shin, Hang-Sik;Hwang, Eung-Ju;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • Garbage composting was studied in a controlled batch reactor with the addition of cooked rice as a biodegradable carbon source to find the effect of C/N ratio control on composting. And composting of bulking agents such as sawdust and wheat straw were tested with the addition of ammonium sulfate as a nitrogen source. As expected, biodegradation of the garbage having low C/N ratio was improved to some extent when foreign carbon was added. But bulking agents used in this study exerted slightly biodegradable carbon potential, indicating that the estimation of the dose of additional carbon considering desirable C/N ratio was not reasonable when lignocellulosic bulking material was added to garbage. It was found that the optimum moisture content increased with sawdust addition meaning the C/N ratio increment. Considering the above results, it was suggested that 78g sawdust per 100g garbage should be mixed to make C/N ratio to 25 and moisture content to 56% for effective composting of the garbage studied in this paper.

  • PDF

Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis (우뭇가사리로부터 레불린산 생산공정을 위한 2단 산 가수분해)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • The study of bioproduct production from inexpensive biomass such as marine biomass has recently attracted considerable attention. Because, marine biomass which compared to land biomass, it can be grown rapidly and is easily cultivated without the need for expensive equipment. In addition, the carbohydrate contents are similar or higher than land biomass such as woody biomass and can be easily converted to chemicals through proper chemical processes. In the production of various biochemicals from marine biomass, levulinic acid is a highly versatile chemical with numerous industrial uses and has the potential to become a commodity chemical. It can be used as a raw material for resins, plasticizers, textiles, animal feed, coatings and antifreeze. In this study, experiments were carried out to determine the optimum conditions of temperature, acid concentration and reaction time for production of levulinic acid from marine biomass, Gelidium amansii, using two-step treatment. In the first hydrolysis step, solid-state cellulose which was used to produce ethanol by fermentation and liquid-state galactose which used to produce bioproduct such as levulinic aicd were obtained through acid soaking. In the second hydrolysis step, the liquid-state galactose was converted into levulinic acid via a high-temperature reaction in a batch reactor. As a result, the overall production yield of Gelidium amansii to levulinic acid in the two-step acid hydrolysis was approximately 20.6% on the initial biomass basis.

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.543-563
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min) initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3% for NO and 84.7% for $NO_2$ were observed at the poser consumptions of 19.8 and 29W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF