• Title/Summary/Keyword: reactive sputtering

Search Result 607, Processing Time 0.03 seconds

Electrical and Optical Properties of SnO$_2$: F Thin Films by Reactive DC Magnetron Sputtering Method (반응성 DC 마그네트론 스퍼터법에 의한 SnO$_2$ : F 박막의 전기광학적 특성)

  • 정영호;김영진;신재혁;송국현;신성호;박정일;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.125-133
    • /
    • 1999
  • Fluorine-doped $SnO_2$ thin films were deposited on soda-lime glass substrates by reactive DC magnetron sputtering method. Crystallinity as well as electrical and optical properties of $SnO_2$ : F thin film were investigated as the variations of deposition conditions such as substrate temperature, DC Power, $O_2$ gas pressure, $SF_6$ gas pressure. $SnO_2$ : F thin film deposited with 5% $SF_6$ gas pressure showed electrical resistivities of $2.5\times10^{-3}$cm with the average optical transparency (about 80%) These electrical and optical properties were found to be related to the crystallinity of $SnO_2$ : F thin films.

  • PDF

Preparation for Mn-Zn Ferrite Soft Magnetic Underlayer Perpendicular Magnetic Recording Disk using Mn-Zn-Fe-O Metal Target (Mn-Zn-Fe-O 금속타깃을 이용한 수직자기기록디스크의 하지연자성층용 Mn-Zn ferrite 박막제작)

  • Kong, Sok-Hyun;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.883-887
    • /
    • 2006
  • In order to attain high-rate deposition of Mn-Zn ferrite thin film for soft magnetic underlayer in perpendicular magnetic recording media, a reactive sputtering using powder-metal targets under the mixture gas of Ar and $O_{2}$ was performed. It was succeeded that Mn-Zn ferrite films with (111) crystal orientation were deposited on Pt(111) underlayer without any annealing process. The film revealed 3.4 kG of 4 ${\pi}Ms$, 70 Oe of coercivity. The deposition rate of the new method was 16 times as high as that of the conventional method using ferrite target.

A Study on the Discharge Characteristics and Formation of MgO Protection Layer for PDP by Reactive Sputtering (반응성 스파트링에 의한 PDP용 MgO 보호층 형성과 그 방전특성에 관한 연구)

  • 하홍주;이우근;남상옥;박영찬;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.357-360
    • /
    • 1996
  • MgO protection layer in ac PDP(plasma display panel) prevents the dielectric layer from ion bombarding in discharge plasma. The MgO layer also has the additional important role in lowering the firing voltage due to a large secondary electron emission coefficient. Until now, the MgO protection layer is mainly prepared by E-beam evaporation. In this study, MgO protection layer is prepared on dielectric layer of ac PDP cell by reactive R.F magnetron sputtering with Mg target under various conditions of oxygen partial pressure. Discharge characteristics of PDP is also studied as a parameter of MgO preparation conditions. The sputtered MgO shows the better discharge characteristics compared with MgO deposited by E-beam evaporator.

  • PDF

Mechanical Characteristics of Crystalline Carbon Nitride Films Grown by Reactive Sputtering (반응성 스퍼터링으로 성장된 결정성 질화탄소막의 기계적 특성)

  • 이성필;강종봉
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Carbon nitride thin films were deposited by reactive sputtering for the hard coating materials on Si wafer and tool steels. When the nitrogen content of carbon nitride film on tool steel is 33.4%, the mean hardness and elastic modulus are 49.34 GPa and 307.2 GPa respectively. The nitrided or carburised surface acts as the diffusion barrier which shows better adhesion of carbon nitride thin film on the steel surface. To prevent nitrogen diffusion from the film, steel substrate can be saturated by nitrogen forming a Fe$_3$N layer. The desirable structure at the surface after carburising is martensite, but sometimes, due to high carbon content an proeutectoid Fe$_3$C structure may form at the grain boundaries, leaving the overall surface brittle and may cause defects.

The Optical Properties of WO$_3$Thin Films Deposited by RF Magnetron Reactive Sputtering (RF 마그네트론 반응성 스퍼터링법으로 증착된 WO$_3$박막의 광특성)

  • 이동규;최영규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.339-342
    • /
    • 1997
  • The optical properties of WO$_3$thin films deposited by RF magnetron reactive sputtering were studied. The substrate was an ITO(indium-tin-oxide) glass(100$\Omega$/ ). The optical properties are examined by different deposition conditions. RF power, substrate temperature, $O_2$concentraction. Ar flow rate, working pressure and thickness are 40~60W, 25~30$0^{\circ}C$, 10%, 54~72sccm, 5~20m7orr and 1200~2400$\AA$, respectively. All these films were colorless, light yellow and found to be amorphous in structure by X-ray diffraction analysis. When RF power, substrate temperature, $O_2$concentraction, Ar flow rate, working pressure and thickness are 40W, $25^{\circ}C$, 10%, 72sccm, 20mTorr and 2400$\AA$, respectively the values of transmittance of the WO$_3$thin films in visible region are about 80%.

  • PDF

The Effect of Dielectric Firing Process in PDP on the Properties of ITO Prepared by Reactive RF Sputtering (반응성 스퍼트링에 의한 ITO의 형성과 유전체 소성공정중의 특성변화에 관한 연구)

  • 남상옥;지성원;손제봉;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.510-514
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn 10wt%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature 15$0^{\circ}C$ and 8% $O_2$. Partial pressure showed about 3.6 Ω/$\square$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF

산화규소 박막을 활용한 반사방지막 코팅 제조 및 특성분석

  • Kim, Gyeong-Hun;Kim, Seong-Min;Jang, Jin-Hyeok;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.300.1-300.1
    • /
    • 2013
  • 반사방지막 코팅(Anti-reflection coating)은 태양전지(Solar cell), 발광다이오드(LED) 등의 반사율을 낮추어 효율을 증대시키기 위하여 사용되고 있다. 본 실험에서는 유리 기판 위에 실리콘 타겟을 이용한 Reactive magnetron sputtering 장비를 활용하여, 50~100 mTorr의 높은 공정 압력(High pressure)에서 증착하여 SiO2 반사방지막 코팅층을 형성하였다. Ellipsometer를 이용하여 SiO2 박막층의 굴절률(Refractive index)을 측정한 결과, 공정 압력에 따라 SiO2 박막이 다양한 굴절률을 가지는 것을 확인할 수 있었다. 또한, UV-Vis spectrometer를 이용하여, 450~600 nm 파장에서의 반사율(Reflectance)과 투과율(Transmittance)을 측정하여 비교, 분석하였다. 나아가 증착된 SiO2 반사방지막을 비정질 실리콘 박막 태양전지에 적용하여 효율 향상 효과를 실험하였다. 이를 활용하여 낮은 굴절률을 갖는 반사방지용 SiO2 코팅층을 형성하여 태양전지의 광 변환 효율을 상승 시킬 수 있고, 발광다이오드의 광 추출 효율을 증가시킬 있을 것으로 여겨진다.

  • PDF

Deposition of PbTio3 thin films by reactive sputtering

  • Ahn, Y.S.;Lee, D.S.;Ahn, E.J.;Yoon, E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.126-129
    • /
    • 1999
  • PbTio3 is a promising material with perovskite structure for pyroelectric sensor applications with its superior pyroelectric properties, low dielectric constants, and low piezoelectric constants. Growth of pyroelectric thin films in general, needs relatively higher temperatures than those of conventional Si semiconductor processing However, low growth temperature is advantageous for the device integration. We report the low temperature (350$^{\circ}C$) growth of PbTio3 thin films by 3-gun DC magnetron reactive sputtering. The effects of substrate temperature, Pb-flux, and total pressure on crystalinity and preferred orientation of PbTio3 thin films are reported.

  • PDF

Preparation of Paraelectric PLT Thin Films Using Reactive Magnetron Sputtering of Multicomponent Metal Target

  • Kim, H.H.;Sohn, K.S.;Casas, L.M.;Pfeffer, R.L.;Lareau, R.T.
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.53-59
    • /
    • 1998
  • Paraelectric lead landthanum titanate(PLT) thin films have been prepared by a reactive dc magnetron sputtering system using a multicomponent metal target. The surface area control of each element on the target markedly facilitates the fabrication of thin films of complex ceramic compounds. A postdeposition heat-treatment was applied to all as-deposited PLT thin films at annealing temperatures up to 75$0^{\circ}C$ for crystalization. The composition of the PLT(28) thin filmannealed at $650^{\circ}C$ was: Pb, 0.73; La, 0.28; Ti, 0.88; O, 2.9. The dielectric constant and dissipation factor of the thin film(200 nm) at low filed measurements (500 Vcm-1) are 1216 and 0.018, respectively. The charge storage density using a typical Sawyer-Tower circuit with a 500 Hz sine wave was 12.5 $\mu$Ccm-2 at the electric field of 200 kVcm-1.

  • PDF

Adhesion of Cu on Polycarbonate with the Condition of Surface Modification and DC-Bias Sputtering Deposition (폴리카보네이트에서의 표면개질 조건과 DC-Bias Sputtering 증착에 따른 Cu 밀착성)

  • 배길상;엄준선;이인선;김상호;고영배;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The enhancement of adhesion for Cu film on polycarbonate (PC) surface with the $Ar/O_2$ gas plasma treatment and dc-bias sputtering was studied. The plasma treatment with this reactive mixture changes the chemical property of PC surface into hydrophllic one, which is shown by the variation of contact angle with surface modification. The micro surface roughness that also gives the high adhesive environment is increased by the $Ar/O_2$ gas plasma treatment. These results were observed distinctly from the atomic force microscopy (AFM). The negative substrate dc-bias effect for the Cu adhesion on PC was also investifated. Accelerated $Ar^{+}$ lons in sheath area of anode bombard the bare surface of PC during initial stage of dc bias sputtering. PC substrate. therefore, has severe roughen and hydrophilic surface due to the physical etching process with more activated functional group. As dc-bias sputtering process proceeds, morphology of Cu film shows better step coverage and dense layer. The results of peel test show the evidence of superiority of bias sputtering for the adhesion between metal Cu and PC.C.