• Title/Summary/Keyword: reactive compatibilizer

Search Result 25, Processing Time 0.023 seconds

Reaction Kinetics and Morphological Changes at Polymer-polymer Interface measured by Rheological Properties (유변학적 성질 측정으로 측정한 고분자 계면에서의 반응 kinetics와 morphology 변화)

  • Kim, Hwang-Yong;Unyong Jeong;Kim, Jin-Kon
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2002.05a
    • /
    • pp.25-27
    • /
    • 2002
  • In this study we investigated the reaction kinetics by a convenient but useful method-rheology to characterize the interface between two immiscible blends with a Reactive compatibilizer. Also, we made an attempt to correlate changes of interface roughness with rheological properties. The blend systems employed in this study was mono-carboxylated polystyrene (PS-mCOOH) and an poly(methyl methacrylate-ran-glycidylmethacrylate) (PMMA-GMA). PS-mCOOH was synthesized by an anionic polymerization and PMMA-GMA by a free radical polymerization. We prepared two plates of each polymer using compression molding with a smooth surface molder, then put one upon another. As soon as these two plates welds together inside a rheometer under nitrogen environment, the torque and moduli were obtained with reaction time at different temperatures. Through the analysis of this modulus change with reaction time, we estimated interfacial reaction and roughening. The increment of modulus in initial state can be correlated to the extent of reaction. We obtained the reaction kinetic constant by fitting appropriate kinetic equation into experimental data. We also showed that increment of modulus in later state was due to by roughened interface.

  • PDF

Modification of Polypropylene for Improving the Laser Transmission Weldability to Polycarbonate (폴리카보네이트와의 레이저 투과 용접성 개선을 위한 폴리프로필렌 개질)

  • Kim, Dae-Jin;Jeon, Il-Ryeon;Park, Hae-Youn;Seo, Kwan-Ho
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.753-763
    • /
    • 2013
  • Laser transmission welding of polymers is now used in a very wide range of industries due to its advantages. If the joining between polypropylene (PP) and polycarbonate (PC) occurs by laser transmission welding, the automotive headlight will get a large profit. However, PP/PC have poor miscibility. In the laser transmission welding results, the adhesion strength between PP and PC was very weak. In this study, PP was modified by grafting of glycidyl methacrylate (GMA). The adhesion strength of PC and PP-g-GMA as a reactive compatibilizer was observed. The adhesion strength was investigated by compatibility with PC, mechanical properties and laser transmission welding.

A Study on the Compatibilization of Blends Based on Poly(phenylene ether) and Polyamide (Poly(phenylene ether)/Polyamide 블렌드의 상용화에 관한 연구)

  • 김형수;임종철
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.441-449
    • /
    • 2001
  • Compatibilization of blends based on poly(phenylene ether) (PPE) and polyamide (PA) has been practiced with the incorporation of a copolymer formed by grafting polystyrene onto polybutadiene latex (g-BS) which is further functionalized with maleic anhydride (MAH) (g-BS*) to impart reactivity with amine groups of PA. The major focus has been placed on the effect of the various structural factors in g-BS8 on the phase morphology and mechanical performance of the blends. For the balance of impact strength and heat resistance, it was important to locate g-BS n particles inside of the PPE phase, which was accomplished by the proper control of the molecular weight and amount of PS in g-BS*. For g-BS*'s having constant molecular weight and amount of PS, the reduction of MAH content or increase of rubber particle size in g-BS* resulted in the increase of domain size and consequently loss in mechanical properties. Based on the comparison made with the conventional PPE/PA blend comprising MAH grafted PPE as a compatibilizer, it was confirmed that the comparable level of mechanical performance can be achieved by an appropriate g-BS* type material with improved whiteness index.

  • PDF

A Study on the Development of Eco-friendly Materials Using EPDM Scrap : Functionalization of EPDM and PP (에틸렌-프로필렌 고무 스크랩을 이용한 친환경소재 개발에 관한 연구 : EPDM과 PP의 기능화)

  • Kim, Sub;Chung, Kyung-Ho
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.180-185
    • /
    • 2009
  • The ethylene-propylene rubber (EPDM) scrap generated from automobile weatherstrip manufacturing process was used to make a thermoplastic elastomer through blending with polypropylene. The surface activated EPDM powder was obtained by the high temperature and shear pulverizer. The addition of surfactant resulted in more surface activated EPDM powder and the optimum loading amounts of surfactant was 1.5 phr. Maleic anhydride was grafted onto polypropylene by reactive blending to give functionalized polypropylene. The wetting property between EPDM scrap and polypropylene was improved by the addition of poly (ethylene-co-acrylic acid) as a compatibilizing agent. Poly(ethylene-co-acrylic acid) decreased the surface tension of polypropylene and thus would contribute to the wettability with EPDM powder.

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends (라디칼 개시제를 이용한 MA-PLA 제조 및 바이오플라스틱 PLA/PA11 블렌드의 상용성 개선)

  • Lee, Jong-Eun;Kim, Han-Eol;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.