• 제목/요약/키워드: reaction-formation

검색결과 3,301건 처리시간 0.054초

고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조 (Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing)

  • 김연욱;윤영목
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

군산시 호소수에서의 수질특성과 THMs 생성에 관한 연구 (A Study on Water Quality and THMs Formation in Lake-Waters at Kunsan)

  • 황갑수;김강주;이영남;여성구;김진남
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.44-50
    • /
    • 2001
  • This study was carried out to investigate characteristics of water quality and THMs formation in lake-waters at kunsan. Of the parameters examined for water quality, pH, alkalinity, SO$_4$$^{-2}$ and Co- reflected the characteristics according to the origin, geography and water source of lakes while COD, SS, T-P, T-N and chlorophyll-a corelatively reflected well the influence of pollution factors around factors around lakes. The result of water quality analysis showed that most lakes in Kunsan area have the severe eutropnication problem, especially in summer. In lake-waters, THMFP overally continued to increase until 48 hour with the reaction time and THMs formation was largely achieved within 24 hour of the reaction time. The average formation ratio were 68.2% for CHCl$_3$, 23.6% for CHCl$_2$Br, 7.6% for CHClBr$_3$ and 0.6% for CHBr$_3$respectively and much difference depending on the reaction time was not shown. Overally, 96h-THEFP levels in lakes were high during June~September and showed higher tencency in lakes where could be regarded more contaminated on the whole. These results suggest that THMFP may be available for the management of lake-water quality as one if the useful parameters for the general evaluation of contamination. 96h-THEMFP failed to show the strong corelation individually with pH, TOC, COD and chlorphyll-a.

  • PDF

탄소나노튜브를 이용한 메탄 하이드레이트 형성 (Methane hydrate formation Using Carbon Nano Tubes)

  • 박성식;서향민;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Formation of Cross-Linked Products of The Reaction Center D1 Protein in Photosystem II under Light Stress

  • Uchida, Suguru;Kato, Yoji;Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.382-384
    • /
    • 2002
  • When illuminated with strong visible light, the reaction center Dl protein of photo system II is photodamage and degraded. Reactive oxygen species and endogenous cationic radicals generated by photochemical reactions are the cause of the damage to the Dl protein. Recently we found that the photodamaged Dl protein cross-links with the surrounding polypeptides such as D2 and CP43 in photosystem II. As the cross-linking reaction is dependent on the presence of oxygen, reactive oxygen species are suggested to be involved. Among the reactive oxygen species examined, ? OH was most effective in the formation of the cross-linked products. These results indicate that the cross-linking is mostly due to ? OH generated at photosystem II. The cross-linking site of the Dl protein is not known. As several tyrosine residues exist at the D­E loop of the Dl protein, there is a possibility that di-Tyr is formed between the D­E loop of the Dl protein and surrounding polypeptides during the strong illumination. Therefore, we examined the formation of di-Tyr using the monoclonal antibody against di-Tyr under excess illumination of the photosystem II membranes. The results obtained here suggest that no di-Tyr is formed during the excess illumination of photosystem II.

  • PDF

Formation Mechanism of Intermediate Phase in $Ba(Mg_{1/3}Ta_{2/3})O_3$ Microwave Dielectrics

  • Fang, Yonghan;Oh, Young-Jei
    • 한국세라믹학회지
    • /
    • 제38권10호
    • /
    • pp.881-885
    • /
    • 2001
  • Kinetics and mechanisms of intermediate phases formation in $Ba(Mg_{1/3}Ta_{2/3})O_3$, obtained by a solid state reaction were studied. $Ba{Ta_2}{O_6}$ and ${Ba_4}{Ta_2}{O_9}$ as intermediate products were first formed at $700^{\circ}C$. $Ba(Mg_{1/3}Ta_{2/3})O_3$ was appeared at $800^{\circ}C$. Several reactions take place on heating process. $Ba{Ta_2}{O_6}$ is found at the first stage of the reaction, and then $Ba{Ta_2}{O_6}$ or ${Ba_4}{Ta_2}{O_9}$ react with MgO to form $Ba(Mg_{1/3}Ta_{2/3})O_3$. The reaction of $Ba(Mg_{1/3}Ta_{2/3})O_3$ formation does not complete until fired at $1350^{\circ}C$ for 60 min. The kinetics of solid-state reaction between powdered reactants was controlled by diffusion mechanism, and can be explained by the Jander's model for three-dimensional diffusion.

  • PDF

군산지역 음용지하수 트리할로메탄(THMs) 생성에 관한 연구 (A Study on THMs Formation in Drinking Underground Water at Kunsan)

  • 황갑수
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.122-128
    • /
    • 2000
  • This study was carried out to survey trihalomethane formation potential(THMFP) levels in drinking underground water and to examine its characteristics in Kunsan area. In drinking underground water, THMFP increased with the lapse of reaction time and 96hr-THMFP was the highest of THMFPs examined. In many cases, 24hr-THMFP, 48hr-THMFP and 96hr-THMFP reflected 2hr-THMFP level due to the largest composition ratio of CHCl$_3$ decreased with the lapse of reaction of CHCl$_3$ among THM individuals. CHCl$_3$ was mostly formed within early 2hour of reaction time, but CHClBr$_2$ and CHBr$_3$ continued their formation until 48 hour. Accordingly, the composition ratio of CHCl$_3$ decreased with the lapse of reaction time while that of total Br derivatives increased. 96hr-THMFPs of drinking underground water in Kunsan area ranged from N.D.(not detected)~98.80 $\mu\textrm{g}$/$\ell$ and, in general, those of western section of Kunsan area, closer to the coast, showed the higher tendency. But, from their large range of variance, it could be considered that THMFPs differ individually even in the same section depending on such factors as the difference of water stream, circumstances of management and so on. All the parameters for water quality examined(pH, KMnO$_4$ consumption;UV$_{254}$ , TOC. Cl$^{[-10]}$ ) showed very week corelation with 96h-THMFP.

  • PDF

비전통핵생성 이론 관점에서 탄산칼슘의 반응경로에 대한 시간분해 분극 및 탈분극 추적 (Time-resolved polarization and depolarization tracking on reaction pathway of calcium carbonates in a view of non-classical nucleation theory)

  • 김광목
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2020
  • The formation characteristics of calcium carbonates are closely related to the durability and mechanical properties of cement-based materials. In this regard, a deep understanding of the reaction pathway of calcium carbonates is critical. Recently, non-classical nucleation theory was summarized and it was presumed that prenucleation clusters are present. The formation of the prenucleation cluster at undersaturated condition (≈ 0.1 ml) in the present study was investigated via electrical characteristics of an electrolytic solution. Calcium chloride dihydrate (CaCl2·2H2O) and sodium carbonate (Na2CO3) were used as starting materials to supply calcium and carbonate sources, respectively. Furthermore, the reaction pathway of calcium carbonates was investigated by time-resolved polarization and depolarization characteristics of the electrolytic solution. The time-resolved polarization and depolarization tests were conducted by switching polarity with an interval of 20 seconds for 1 hr and by measuring the variation of electrical resistance. It can be inferred from the results obtained in the present study that the reactive constituent for the formation of calcium carbonates was mostly consumed in the period possibly associated with the prenucleation and the reaction pathways may be governed by the monomer-addition mechanism.

탄소환원질화법을 이용한 AIN Whisker의 합성 I. 불화물 첨가의 영향 (Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition)

  • 양성구;강종봉
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.118-124
    • /
    • 2004
  • 탄소환원질화법에 의해 합성된 질화알루미늄의 물성은 출발물질의 종류, 액상$.$기상 반응물질의 양, 분위기 그리고 합성온도에 따라서 많은 차이를 나타내었다 질화알루미늄 합성을 위하여 Al원으로는 $\alpha$-A1$_2$O$_3$를 사용하였고 환원제로는 카본 블랙을 사용하였으며, 기상반응을 유도하기 위하여 AlF$_3$를 사용하여 고순도 질소분위기에서 실험을 행하였다. 또한 액상반응 시 미세구조상의 변화를 확인하기 위하여 금속 알루미늄을 첨가하여 실험을 행하였다. 질화알루미늄이 생성과 침상형 휘스커상의 형상은 1$600^{\circ}C$의 온도에서 가장 잘 나타났으며 열처리 온도의 상승은 오히려 휘스커상의 형성을 방해하고 있음을 보여주었다. 침상형 휘스커의 합성에 가장 큰 영향을 주는 것은 기상반응을 일으키는 AlF$_3$ 첨가이며, AlF$_3$의 첨가량이 증가함에 따라 침상형 휘스커상을 확인하였다. 액상반응을 위한 금속 알루미늄 첨가는 전체의 15wt%까지는 침상형 휘스커가 증가하고 있음을 나타내었으나 l5wt% 이상으로 첨가하는 경우 오히려 휘스커가 감소하는 것으로 나타났다.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.