• 제목/요약/키워드: reaction active energy.

검색결과 274건 처리시간 0.027초

Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구 (A Study on the Influence of the Structural Characteristics of Cu/CeO2 Catalyst on the Low-Temperature Oxidation of Carbon Monoxide)

  • 김민수;최경륜;김세원;홍성창
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.286-292
    • /
    • 2020
  • 본 연구는 Cu/CeO2-X 촉매의 저온 CO 산화 활성에 미치는 영향을 촉매의 구조적 특성, 반응 특성을 통해 확인하였다. 사용된 촉매는 습윤 함침법으로 제조되었으며, 각기 다른 소성온도(300~600 ℃)에서 형성된 CeO2 (지지체)를 이용하여 Cu (활성금속)를 담지함으로써 Cu/CeO2-X 촉매를 제조하였다. 제조된 Cu/CeO2-X 촉매는 저온 CO 산화 활성을 평가하였다. 125 ℃에서 Cu/CeO2_300 촉매는 90% 이상의 활성을 나타냈으며, CeO2의 소성온도가 증가됨에 따라 활성이 점차 감소하여, Cu/CeO2_600 촉매는 65%를 나타냈다. 다음으로 촉매의 물리/화학적 특성을 Raman, BET, XRD, H2-TPR, XPS 분석으로 확인하였다. XPS 분석 결과, CeO2-X의 소성온도가 낮을 수록 불안정한 Ce3+ 종(비 화학양론 종) 비율이 증가하였다. 증가된 Ce3+종은 Cu와 결합함으로 써 치환결합을 형성하였으며 Raman 분석의 CeO2 peak 변화와 H2-TPR 분석의 치환결합 구조의 환원 peak를 통해 확인하였다. 결과적으로 Cu와 CeO2의 치환 결합 형성은 촉매의 redox 특성 및 저온 CO 산화 활성을 증진시켰다고 판단된다.

리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성 (Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures)

  • 권지윤;류지헌;김준호;채오병;오승모
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.116-122
    • /
    • 2010
  • DC magnetron 스퍼터링을 이용해 구리(Cu) 호일 위에 실리콘(Si)을 증착한 후 $800^{\circ}C$에서 열처리하여 $Cu_3Si$를 얻고, 이의 리튬 이차전지용 음극으로서 특성을 조사하였다. $Cu_3Si$는 Si 성분을 포함하고 있으나 상온에서 리튬과 반응하지 않았다. 선형 주사 열-전류(linear sweep thermammetry, LSTA) 실험과 고온 충방전 실험을 통하여, 상온에서 비활성인 $Cu_3Si$$85^{\circ}C$ 이상에서는 활성화되어 Si 성분이 전환(conversion)반응에 의해 리튬과 반응함을 확인하였다. $Cu_3Si$에서 분리된 Si는 $120^{\circ}C$에서 Li-Si 합금 중에서 리튬의 함량이 가장 많은 $Li_{21}Si_5$ 상까지 리튬과 반응함을 유사 평형 조건(quasi-equilibrium)의 실험으로부터 알 수 있었다. 그러나 정전류 조건($100\;mA\;{g_{Si}}^{-1}$)에서는 리튬 합금반응이 $Li_{21}Si_5$까지 진행되지 못하였다. 또한 $120^{\circ}C$에서 전환반응에 의해 생성된 Li-Si 합금과 금속 상태의 Cu는 충전과정에서 다시 $Cu_3Si$로 돌아감, 즉 $Cu_3Si$와 리튬은 가역적으로 반응함을 확인하였다. $120^{\circ}C$에서 $Cu_3Si$ 전극은 비정질 실리콘 전극보다 더 우수한 사이클 특성을 보여 주었다. 이는 비활성인 구리가 실리콘의 부피변화를 완충하여 집전체에서 탈리되는 현상을 완화하고 결과적으로 전극이 퇴화하는 것을 억제하기 때문인 것으로 설명할 수 있다. 실제로 비정질 실리콘 전극은 충방전 후에 실리콘 층의 균열과 탈리가 관찰되었으나, $Cu_3Si$ 전극에서는 이러한 현상이 관찰되지 않았다.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Cloning and Expression of the Duck Leptin Gene and the Effect of Leptin on Food Intake and Fatty Deposition in Mice

  • Dai, Han Chuan;Long, Liang Qi;Zhang, Xiao Wei;Zhang, Wei Min;Wu, Xiao Xiong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.850-855
    • /
    • 2007
  • Leptin is the adipocyte-specific product of the obese gene and plays a major role in food intake and energy metabolism. Leptin research was mainly focused on mammalian species, but understanding of leptin and its function in poultry is very poor. In this study, the duck leptin gene was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) from duck liver RNA. The cDNA fragment was inserted into the pET-28a expression vector, and the resulting plasmid was expressed in Escherichia coli BL21 (DE3). Experimental mice were given an intraperitoneal injection of 10 mg/kg leptin dissolved in phosphate buffered saline (PBS), while the control mice were injected with PBS. The effect of leptin on food intake, body weight and fatty deposition in mice was detected. Sequence analysis revealed that duck leptin had a length of 438 nucleotides which encoded a peptide with 146 amino acid residues. The sequence shares highly homology to other animals. The coding sequence of duck leptin was 84 and 86% identical to human and pig leptin nucleotides sequence. Highest identity was with the rat coding sequence (95%). The identity of the amino acid sequence was 84, 82 and 96% respectively compared to that of the human, pig and rat. Results of SDS-PAGE analysis indicated that a fusion protein was specifically expressed in E. coli BL21 (DE3). The purified product was found to be biologically active during tests. Continuous administration of recombinant duck leptin inhibited food intake. Despite the decrease of food intake, leptin significantly induced body weight and fatty deposition. These changes were accompanied by a significant down-secretion of plasma glucose, cholesterol, triglyceride and insulin levels in mice. The observations provide evidence for an inhibitory effect of leptin in the regulation of food intake and for a potential role of duck leptin in the regulation of lipogenesis.

산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 8. TEOS를 함유한 복합재료의 열분해 메카니즘 및 열안정성 연구 (Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 8. Studies on Thermal Decomposition Mechanism and Thermal Stability of Composites Impregnated with TEOS)

  • 박수진;서민강;이재락
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.866-875
    • /
    • 2001
  • 본 연구에서는 고온 산화분위기 하에서 탄소/탄소 복합재료의 열적 향상을 위해 사용된 tetraethylorthosilicate(TEOS)의 첨가량에 따른 복합재료의 kinetic parameter에 기초한 열분해 메카니즘 및 열안정성을 열중량분석기(TGA)를 사용하여 고찰하였다 TEOS를 함유한 탄소/탄소 복합재료의 kinetic parameter, 즉 열분해 활성화 에너지 ($E_d$), 반응차수(n), 지수앞 인자 (A)는 각각 136 kJ/mol, 0차, 및 2.3$\times$$10^9s^{-1}$을 나타내었으며, 특히 IPDT 및 $E_d$로부터 살펴본 복합재료의 열안정성은 탄소/탄소 복합재료에 TEOS가 첨가되면 크게 향상되었는데, 이는 산소에 대한 산화방지막, 즉 $SiO_2$의 형성으로 인한 복합재료 표면에서의 카본 활성종에 산소의 침투를 방해하여 TEOS를 함유한 복합재료가 이를 함유하지 않은 것에 비하여 표면 산화 속도가 감소되어 열안정성이 증가하였다고 사료된다.

  • PDF

더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응 (Solar CO2-Reforming of Methane Using a Double-Layer Absorber)

  • 김동연;이진규;이주한;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.267-273
    • /
    • 2012
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber-the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam-was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • 한국자기공명학회논문지
    • /
    • 제20권2호
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

전이 금속 산화물을 이용한 가시광선 기반 광촉매 분해 (Visible Light-based Photocatalytic Degradation by Transition Metal Oxide)

  • 이수민;박예지;이재훈;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제29권6호
    • /
    • pp.299-307
    • /
    • 2019
  • 광촉매는 물에서 유기 염료를 분해하는 친환경적 기술이다. 산화 텅스텐은 이산화 티타늄에 비해 더 작은 밴드갭을 지니고 있어 광촉매 나노물질로서 활발히 연구되고 있다. 계층적 구조의 합성, 백금 도핑, 나노 복합물 또는 다른 반도체와의 결합 등이 광촉매 분해 효율을 향상시키는 방법들로 연구되고 있다. 이들 방법들은 광 파장의 적색편이를 유도하여 전자 이동, 전자-정공 쌍의 형성과 재결합에 영향을 미친다. 산화 텅스텐의 형태 개질을 통해 앞서 언급한 광촉매 분해 효율을 향상시키는 방법들과 합성에 대해 분석하였으며 금속 산화물과 탄소 복합재를 결합하는 방법이 새로운 물질의 합성이 필요없으며 가장 효율적인 방법으로 조사되었다. 이러한 광촉매 기술은 수처리 분리막기술과 모듈화하여 정수처리 목적으로 사용될 수 있다.

산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거 (Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process)

  • 신승규;안해영;김한승;송지현
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향 (Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films)

  • 김경태;이정자;황운석
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.