To prepare ready-to-use rice flour as de novo material for processed rice foods, glutinous(W) and normal rice grains (N) were soaked for 1, 8, and 12 hours prior to processing. One half (DG) was air-dried and milled, and the other (WG) was milled and air-dried. General, morphological and pasting properties of the flours (NDG, NWG, WDG, WWG) were compared to those of a control (raw milled rice without soaking). The general compositions of the rice flours varied with soaking. Crude ash was considerably decreased at the beginning of soaking (1 hour). With the soaking, the rice flour, having polygonal shaped particles and a layered surface, acquired particles with smooth edges, which were then uniformly distributed. Additionally, the WG flour was lighter and had a lower ${\Delta}E$ value than the DG flour, due to a higher L and less +b as a result of soaking. Compared to the control, the WBC of the normal rice flour was decreased significantly with soaking, and the WG flour had significantly lower WBCs than the DG flour. Stirring number (SN), an indicator of ${\alpha}-amylase$ activity, was highly and significantly correlated with WBC (r=-0.85, p=0.0001) in the normal rice flour. At $80^{\circ}C$, the SP and solubility of all the soaked rice flours were much higher than those of the control. Positive (r=+0.85, p=0.0001) and negative (r=-0.61, p=0.02) correlations between the SP and solubility of the normal and glutinous rice flours were found, respectively. Using RVA, the pasting temperature of NDG was lower than that of NWG (p<0.0001). The peak viscosities of all the soaked flours were significantly decreased with soaking (p<0.0l), with the highest viscosity in the normal rice flour soaked for 8 hrs. Total setback, indicative of retrogradation, was lower in NDG than in NWG, with the lowest setback at 8 hrs of' soaking. Based on these finding, the NDG flour with 8 hrs of soaking was less damaged, and had a lower total setback and lower pasting temperature, which would make it an appropriate rice flour for commercial mass production.