• 제목/요약/키워드: ratio of angular velocity

검색결과 81건 처리시간 0.029초

주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구 (Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.

테이퍼진 단면을 가진 회전 외팔보의 진동해석 (Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section)

  • 유홍희;이준희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.348-353
    • /
    • 2008
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

  • PDF

테이퍼진 단면을 가진 회전 외팔보의 진동해석 (Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section)

  • 이준희;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.363-369
    • /
    • 2009
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

슬릿이 있는 Taylor-Couette 유동의 실험적 연구 (Experimental study of axial slit wall effect on Taylor-Couette flow)

  • 이상혁;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3183-3186
    • /
    • 2007
  • Taylor-Couette flow may appear when the angular velocity is different between two concentric rotating cylinders. This kind of Taylor-vortex flow can be easily seen in lots of engineering problems. In general the geometries of rotating cylinders are generally complex in these cases. In this study, we investigated Taylor-Couette flow when the outer cylinder has the slit along the annulus. The radius ratio and aspect ratio of the experimental model used was 0.825 and 48, respectively. The depth of slits is 5mm and total 18 slits are azimuthally located along the inner wall of outer cylinder. We used PIV method to measure the flow and applied index matching method to resolve the complex geometry effect. The results show the model with slit has no stable wavy vortex region above Re=143.

  • PDF

피치제어형 풍력발전시스템의 출력제어 (Power Control of a Pitch-controlled Wind Power System)

  • 임종환;허종철
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.84-91
    • /
    • 2003
  • The paper presents a power control algorithm for a full pitch-controlled wind power system. The design of a pitch controller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the tip speed ratio is constant. For power control, however, the tip speed ratio is no longer a constant. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle. The reference pitch model is used to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

전단 및 단면 관성효과를 고려한 Cross-ply 복합재 회전 외팔보의 면외방향 굽힘 진동해석 (Flapwise Bending Vibration Analysis of Rotating Cross-ply Composite Beams)

  • 이승현;신상하;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.994-999
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating cross-ply composite beam based on Timoshenko beam theory is presented. To analyze the composite beam exactly, the effects of shear deformation and rotary inertia are included. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. The effects of the dimensionless angular velocity and the slenderness ratio parameter on the variations of modal characteristics are investigated

  • PDF

수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I) (Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I))

  • 이진학;오상호;박진순;이광수;이상열
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.

초소형 날갯짓 비행체의 최적 날갯짓 속도 분포 연구 (Velocity Profile Optimization of Flapping Wing Micro Air Vehicle)

  • 조선규;이준희;김종암
    • 한국항공우주학회지
    • /
    • 제48권11호
    • /
    • pp.837-847
    • /
    • 2020
  • 본 논문에서는 20g급 날갯짓 초소형 비행체의 정지 비행 시의 날갯짓 효율을 증가시키기 위한 날갯짓 속도 분포 최적화를 진행하였다. 비원형 기어를 이용하여 다양한 날갯짓 속도 분포를 나타내는 메커니즘을 설계하였으며, 실증 기체를 이용하여 실험적으로 날갯짓 속도 분포 최적화를 진행하였다. 최적화 모델은 노이즈를 포함한 Kriging을 사용하였으며 불확실성에 의한 오차를 반영하였다. 날갯짓 속도 분포를 네 개의 파라미터로 나타내어 각 파라미터에 대한 최적화를 진행하였고. 최적화 결과 추력-파워비가 11.3% 증가하였다. 추력-파워비가 증가한 이유에 대해 탄성력에 의해 이전 스트로크에서의 각운동에너지가 일부 보존되어 다음 스트로크에서 사용되어 효율이 높아진 것으로 분석하였다.

병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화 (Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability)

  • 홍금식;이승환;최진태
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.