• Title/Summary/Keyword: rate distortion (RD)

Search Result 45, Processing Time 0.021 seconds

An Efficient coding Method for Motion Prediction Flag in the Scalable Video Encoding Standard (스케일러블 동영상 부호화 표준에서 움직임 예측 플래그를 위한 효율적인 부호화 방식)

  • Moon, Yong-Ho;Eom, Il-Kyu;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In the scalable video coding standard, inter-layer prediction based on the coding information of the base layer was adopted to increase the coding performance. This prediction tool results in new syntax elements called motion_prediction_flag (mPF) and residul_prediction_flag(rPF), which are carried to notify the motion vector predictor (MVP) and reference block required in the motion compensation of the decoder. In this paper, an efficient coding method for mPF is proposed to enhance coding efficiency of the salable video coding standard. Through an analysis on the transmission of mPF based on the relationship between the MVPs, we discover the conditions where mPF is unnecessary at the decoder and suggest a modified rate-distortion (RD) cost function to make RD optimization more effective. Simulation results show that the proposed method offers BD rate savings of approximately 1.4%, compared with the conventional SVC standard.

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

An Effective of Rate Control for Scene Change in H.264/AVC (장면전환에 효율적인 H.264/AVC 비트율 제어 기법)

  • Son, Nam-Rye;Shin, Yoon-Jeong;Lee, Guee-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.26-39
    • /
    • 2007
  • In recent years, rate control is an important technique in real time video communication applications using H.264/AVC. Many existing rate control algorithms employ the quadratic rate-distortion model, which is determine the target bits for each P frame. In this paper, a new rate control algorithm for transmission of H.264/AVC video bit stream through CBR(Constant Bit Rate) channel is proposed. The proposed algorithm predicts an adaptive QP(Quantization Parameter) for improving video distortion, due to high motion and abruptly scene change, which target bit rate and MAD(Mean of Absolute Difference) for current frame considering image complexity variance between previous and current frames. Additionally, it uses frame skip technique to maintain bit stream within a manageable range and protect buffer from overflow or underflow. Experimental results show that the proposed method gives a quality improvement of about 0.5dB when compared to previous rate control algorithm. Also our proposed algorithm encodes the video sequences with less frame skipping compared to the existing rate control for H.264/AVC.

MPEG-4 Video Rate Control Algorithm using SOFM-Based Neural Classifier (SOFM 신경망 분류기를 이용한 MPEG-4 비디오 전송률 제어)

  • Park, Gwang-Hoon;Lee, Yoon-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.425-435
    • /
    • 2002
  • This paper introduces a macroblock-based rate control algorithm using the neural classifier based in Self Organization feature Maps (SOFM). In contrast to the conventional rate control methods based on the mathematical rate distortion (RD) model and the feedback regression, proposed method can actively adapt to the rapid-varying image characteristics by establishing the global model for bitrate control and by using the SOFM based neural classifier to manage that model. Proposed rate control algorithm has 0.2 dB ~ 0.6 dB better performances than MPEG-4 macroblock-based rate control algorithm by evaluating with the encoded Peak Signal to Noise Ratios while maintaining similar overall computational complexity.

Early Coding Unit-Splitting Termination Algorithm for High Efficiency Video Coding (HEVC)

  • Goswami, Kalyan;Kim, Byung-Gyu;Jun, Dongsan;Jung, Soon-Heung;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.407-417
    • /
    • 2014
  • A new-generation video coding standard, named High Efficiency Video Coding (HEVC), has recently been developed by JCT-VC. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. However, one the most important challenges in HEVC is time complexity. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. This provides a high encoding quality, but also causes computational complexity. We focus on a reduction scheme of the computational complexity and propose a new approach that can terminate the quadtree-based structure early, based on the RD costs of the parent and current levels. Our proposed algorithm is compared with HEVC Test Model version 10.0 software and a previously proposed algorithm. Experimental results show that our algorithm provides a significant time reduction for encoding, with only a small loss in video quality.

SNR Scalable Coding of 3-D Mesh Sequences Based on Singular Value Decomposition (특이값 분해에 기반한 3차원 메쉬 동영상의 SNR 계층 부호화)

  • Heu, Jun-Hee;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.289-298
    • /
    • 2008
  • We propose an SNR-scalable coding algorithm for three-dimensional mesh sequences based on singular value decomposition (SVD). SVD achieves a coding gain by representing a mesh sequence with a small number of basis vectors and singular values. First, we introduce a bit plane coding scheme and derive a quantitative relationship between each bit plane and the reconstructed image quality. Using the relationship, we develop a rate-distortion (RD) optimized coding algorithm. Moreover, we propose prediction techniques to exploit the spatio-temporal correlations in real mesh sequences. Simulation results demonstrate that the proposed algorithm provides significantly better RD performance than conventional SVD coders.

Full Search Equivalent Motion Estimation Algorithm for General-Purpose Multi-Core Architectures

  • Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.13-18
    • /
    • 2013
  • Motion estimation is a key technique of modern video processing that significantly improves the coding efficiency significantly by exploiting the temporal redundancy between successive frames. Thread-level parallelism is a promising method to accelerate the motion estimation process for multithreading general-purpose processors. In this paper, we propose a parallel motion estimation algorithm which parallelizes the motion search process of the current H.264/AVC encoder. The proposed algorithm is implemented using the OpenMP application programming interface (API) and can be easily integrated into the current encoder. The experimental results show that the proposed parallel algorithm can reduce the processing time of the motion estimation up to 65.08% without any penalty in the rate-distortion (RD) performance.

Fast CU Decision Algorithm using the Initial CU Size Estimation and PU modes' RD Cost (초기 CU 크기 예측과 PU 모드 예측 비용을 이용한 고속 CU 결정 알고리즘)

  • Yoo, Hyang-Mi;Shin, Soo-Yeon;Suh, Jae-Won
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2014
  • High Efficiency Video Coding(HEVC) obtains high compression ratio by applying recursive quad-tree structured coding unit(CU). However, this recursive quad-tree structure brings very high computational complexity to HEVC encoder. In this paper, we present fast CU decision algorithm in recursive quad-tree structure. The proposed algorithm estimates initial CU size before CTU encoding and checks the proposed condition using Coded Block Flag(CBF) and Rate-distortion cost to achieve the fast encoding time saving. And, intra mode estimation is also possible to be skipped using the CBF values acquired during the inter PU mode estimations. Experiment results shows that the proposed algorithm saved about 49.91% and 37.97% of encoding time according to the weighting condition.

In-Loop Selective Decontouring Algorithm in Video Coding (비디오 부호화 루프 내에서 의사 윤곽 오차의 선택적 제거 알고리즘)

  • Yoo, Ki-Won;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.697-702
    • /
    • 2010
  • Contour artifact is known as the unintentional result of quantizing a flat area that has smooth gradients. In this letter, a decontouring algorithm is proposed to efficiently remove false contours that occur in typical block-based video coding applications. First, the algorithm goes through a refinement stage to determine candidate blocks probably having noticeable false contours with different kinds of features in a block. Then, pseudo-random noise masking is applied to those blocks to mitigate the contour artifacts. This block-based selective decontouring can efficiently remove the unnecessary processing of those blocks that have no false contour, which incidentally ensures a minor penalty in visual quality and computational complexity. The proposed algorithm was demonstrated, integrated into H.264/AVC, that visual quality can be significantly enhanced with an ignorable rate-distortion (RD) loss and an minor increase in computational complexity.

Phase Mode Decision Scheme for Fast Encoding in H.264 SVC (H.264/AVC 스케일러블 비디오 코딩에서 빠른 부호화를 위한 단계적 모드 선택 기법)

  • Goh, Gyeong-Eun;Kang, Jin-Mi;Cho, Mi-Sook;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.793-797
    • /
    • 2008
  • To achieve flexible visual contents adaptation for multimedia communications, the ISO/IEC MPEG & ITU-T VCEG form the JVT to develop an SVC amendment for the H.264/AVC standard. JVT uses inter-layer prediction that can improve the rate-distortion efficiency of the enhancement layer. But inter-layer prediction causes computational complexity to be increased. In this paper, we propose a fast mode decision for inter frame coding. It makes use of the correlation between optimized prediction mode and its RD cost. Experimental results show that the proposed schemes save up to 38% of encoding time with a negligible coding loss and bit-rate increase.