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A new-generation video coding standard, named High 
Efficiency Video Coding (HEVC), has recently been 
developed by JCT-VC. This new standard provides a 
significant improvement in picture quality, especially for 
high-resolution videos. However, one the most important 
challenges in HEVC is time complexity. A quadtree-based 
structure is created for the encoding and decoding 
processes and the rate-distortion (RD) cost is calculated 
for all possible dimensions of coding units in the quadtree. 
This provides a high encoding quality, but also causes 
computational complexity. We focus on a reduction 
scheme of the computational complexity and propose a 
new approach that can terminate the quadtree-based 
structure early, based on the RD costs of the parent and 
current levels. Our proposed algorithm is compared with 
HEVC Test Model version 10.0 software and a previously 
proposed algorithm. Experimental results show that our 
algorithm provides a significant time reduction for 
encoding, with only a small loss in video quality.   
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I. Introduction 

Recently, ISO-IEC/MPEG and ITU-T/VCEG formed the 
Joint Collaborative Team on Video Coding (JCT-VC), which 
developed the next-generation video coding standard called 
High Efficiency Video Coding (HEVC) [1]. The major goal of 
HEVC was to achieve a significant improvement in coding 
efficiency, compared to H.264/AVC [2], especially with high-
resolution video content.  

The video encoding and decoding processes in HEVC are 
composed of three units: a coding unit (CU) for the root of the 
transform quadtree, as well as a prediction mode for the 
INTER/SKIP/INTRA prediction; a prediction unit (PU) for 
coding the mode decision, including motion estimation and 
rate-distortion (RD) optimization; and a transform unit (TU) 
for transform coding and entropy coding. Initially, a frame is 
divided into a sequence of its largest non-overlapping coding 
units, called a coding tree unit (CTU). A CTU can be 
recursively divided into smaller CUs and made flexible using 
quadtree partitioning, which is called a coding tree block 
(CTB).  

A CTU has a block structure size of 64 × 64 pixels, which 
can be decomposed into four 32 × 32 pixels CUs. Further still, 
each 32 × 32 pixels CU can be divided into four CUs of 16 × 16 
pixels. This decomposition process can continue to CUs of up 
to 8 × 8 pixels blocks. That means the 8 × 8 pixels block is the 
smallest possible for a CU. Moreover, for the different 
combinations of CU structures, different CTBs are generated 
for a single CTU. For each CTB, RD cost value is calculated. 
The CTB which has the minimum RD cost value is considered 
as the best one. The illustration of the CTB structure for a CTU 
is given in Fig. 1(a). In Fig. 1, a 64 × 64 pixels CTU block is 
shown divided into smaller blocks of CUs. Upon calculating 
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Fig. 1. (a) CTB structure which provides the lowest RD cost for 
CTU and (b) Corresponding CTU partitioning for the best 
CTB structure. 
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the RD cost for every combination, the CUs which are under 
the red dotted part of Fig. 1(a) give the minimum RD value. 
The corresponding CTU partitioning and CTB structure for 
this particular (best) combination is shown in Fig. 1(b). 

The CTB is an efficient representation of variable block sizes 
so that regions of different sizes can be coded with fewer bits 
while maintaining the same quality. It is possible to encode 
stationary or homogeneous regions with a larger block size, 
resulting in a smaller side-information overhead. On the other 
hand, the CTB structure dramatically increases the 
computational complexity. As an example, if a frame has 
dimensions of 704 × 576 pixels, then it will be decomposed 
into 99 (11 × 9) CTUs, and a separate CTB will be created for 
each CTU. For each CTB, 85 calculations are involved for 
different CU sizes. As a result, 8,415 CU calculations are 
required for the CTB structure, whereas only 1,584 
calculations are needed for a 16 × 16 macroblock, as was used 
in the previous standard (H.264/AVC). From this analysis, it is 

clear that the new CTB structure in HEVC greatly increases the 
computational complexity. From the viewpoint of real-time 
applications, we need faster video encoders to support real-time 
video services. Hence, it is important to design a HEVC 
encoder which can encode a video stream so as to achieve a 
similar bit rate and quality but also a reduction in encoding 
time, while comparing with the HEVC Test Model (HM) 
reference software as a benchmark.  

Only a few reports have been published regarding reducing 
the CTB computational complexity. In [3], a proposed novel 
early-CU termination algorithm, commonly known as ECU, 
was integrated into the HM reference software. According to 
ECU, no further processing of sub-trees is required when the 
current CU selects SKIP mode as the best prediction mode at 
the current CU depth. In [4], it is shown that when the cost of a 
current CU is lower than the sum of the costs of CUs 
belonging to the subtrees of the current CU, then no further 
processing of subtrees is required. In [5], an early partition 
decision algorithm is presented that attempts to terminate the 
mode decision process after checking the INTER mode with 
each of the PU partition types. Some fast-termination 
algorithms have been reported to explore other components in 
HEVC [6]–[9]. 

In [10], an early CU size-determination algorithm has been 
reported. In this work, the authors have exploited two fast 
approaches — adaptive depth-range determination and early 
termination of unnecessary motion estimation on small CU 
sizes. Supervised learning–based algorithms have also been 
used for estimating the CU size using features specified in [11], 
[12]. A Bayesian decision rule has been used in [11] and the 
supported vector machine was applied in [12] to determine the 
CU size before the general RD optimization technique in HM 
reference software. All the above mentioned algorithms are 
related with INTER prediction. On the other hand, a fair 
number of works have been reported in fast INTRA-mode 
decision. In [13], variance values of coding-mode costs are 
used to terminate the current CU mode decision as well as TU 
size selection. A two-stage process has been reported in [14], 
where in the first stage texture complexity of different CUs are 
analyzed, followed by an elimination process for small 
prediction unit candidates for current blocks in INTRA mode. 
In [15], a coarse INTRA-mode decision algorithm is applied 
by first using the Hadamard transform. Then, a fine refinement 
is done to reduce the complexity of the INTRA-mode decision. 
A gradient-based approach has been used in [16] for fast 
INTRA prediction. Apart from that, TU splitting approaches 
are also used for fast mode decision. In [17], a residual 
quadtree mode decision algorithm has been reported by 
replacing the original depth-first mode decision process by a 
merge-and-split process. 
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In this paper, we are focusing on CU partitioning to reduce 
the computational complexity of the CTB structure. Our main 
objective is to create an algorithm that decides whether a CU 
should be decomposed into four lower-dimension CUs or not. 
The proposed approach should terminate the coding tree earlier 
than conventional standard reference software. The proposed 
algorithm is based on the RD costs of the parent and current 
CUs in a CTB. Motion activity and local statistics of the RD 
cost value are also considered in this context. As we have 
previously mentioned, there have already been a number of 
attempts at this problem. However, our proposed technique is 
simple to implement and robust in nature. Moreover, it is 
possible to incorporate the proposed technique into other early-
CU termination algorithms. 

In the next section, our proposed approach is discussed in 
detail. The experimental results are given in section III and 
finally conclusions are drawn in section IV.  

 II. Proposed Approach 

As we have discussed in the last section, the CTB which 
provides the minimum RD cost is considered to be the best for 
a HEVC encoder. According to this technique, before 
calculating the RD values of all possible combinations of CTB, 
it is impossible to take any decision regarding CTU partitioning. 
Since the main objective is to select the lowest RD cost among 
all combinations in [4], it is shown that no further 
decomposition is required if the CTB satisfy the condition 
shown in (1), where the subscript t indicates the current level 
and t+1 indicates the next level 
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Fig. 2. Available information in a CTB structure. 
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However, at depth t, it is not possible to get any information 
about depth t+1 without splitting the CU. We can only use 
information from the prior level (depth t–1). In Fig. 2, the 
available information is shown for each level of hierarchy in a 
CTB. Based on this situation, we use the RD cost values of the 
current depth t and the previous depth (t–1) levels and propose 
a ratio function, which is discussed in detail in the next 
subsection. 

1. Ratio Function  

Let us consider that CUt–1 was split and four CUs were 
created, which means (1) is not satisfied. So, we can consider 
that the RD cost of CUt–1 is greater than the costs of its child 
nodes, as shown in (2) 
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The ratio function for a CUt (i) at depth t can be defined as 
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This parameter is basically a ratio of the RD costs of the 
current CU and its parent CU. When a CU is split, then it will 
create four child CUs and for each newly created CU, we can 
define a value for its ratio function. From (3), it can be inferred 
that this parameter should have some upper limit, since the sum 
of the ratio function has an upper bound of 1. It is also observed 
that when the ratio function of a child is lower than its siblings, 
then in the next level it has a low chance of splitting.  

To justify our theoretical approach and to make an upper 
bound for the ratio function, we have performed an experiment 
on HM reference software for four sequences of different 
dimensions. In this experiment, we have checked the ratio 
functions for all encoded CUs for four quantization parameter 
(QP) values, which have been split. According to our 
experimental result, all the split CUs have a ratio function 
below 0.25, as shown in Fig. 3. That means if a child has an 
RD cost that is less than one quarter of its parent, then at the 
next level it has a low chance of splitting. Moreover, to make 
this decision, we do not need any information from depth t+1. 
Therefore, this parameter can be used as a threshold for making 
the decision to split a current CU in the next level.  

In our proposed algorithm, we have incorporated the ratio 
function for different motion activities in a video sequence. The 
details of the motion activity are discussed in the next 
subsection. 



410   Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014 
http://dx.doi.org/10.4218/etrij.14.0113.0458 

 

Fig. 3. Ratio function analysis of four video sequences. 
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 2. Motion-Activity Information at PU Level 

A CU is consisted of two basic units: PU and TU. All 
prediction-related calculations and algorithms are under the 
umbrella of PU. There are three kinds of predictions possible in 
HEVC. These are SKIP, INTRA and INTER mode, 
predictions. However, in SKIP mode, there is no need to 
encode a CU at all — it can be predicted directly from the 
reference frame. Generally, homogeneous and motionless 
regions are encoded as SKIP mode. According to the ECU 
algorithm [3], if a CU is coded as SKIP mode then no further 
splitting of that CU is required. Motivated by this fact, in this 
work, we have explored other prediction modes of PU. 

As shown in Fig. 4, INTER and INTRA predictions have 
different kinds of PU modes. In HEVC encoders, SKIP mode 
is calculated first, followed by INTER and INTRA modes. The 
RD values for all kinds of modes for both INTER and INTRA 
(as shown in Fig. 4) are calculated in HEVC encoders to get 
the best PU mode. After the completion of all mode 
calculations, the CU is divided into four CUs of lower 
dimensions. PU mode calculations of each child CU are done 
recursively.  

Generally, complex motion and rich-texture regions are 
encoded as low dimension INTER or INTRA PU modes. We 
have classified all the prediction modes according to motion 
activity (Table 1). However, to classify the prediction modes 
into different motion activities is not a new concept. This kind 
of motion activity was explored to a greater extent in the 
H.264/AVC-based codec system [18]–[20]. In this work, we 
have classified the PU modes into four motion activities: 
motionless region, slow-moving region, moderate motion–
based region, and complex motion or texture-based region. In 
Table 1, our classified motion activity and the corresponding 
PU modes are shown. This is basically a labeling of the PU 
dimension, which incorporates negligible computational 
complexity of the overall process [21]. However, we have 

defined a parameter named as PU-mode weighting factor 
(PU_WF). This parameter simply represents each group of 
motion activity–based PU modes, as shown in Table 1. 

We have assumed that if a region in a video sequence has 
relatively slow motion activity compared to other regions, then 
there is a high chance that the slow-moving region will not split 
in that hierarchy of the CTB. Motivated by this concept, we 
have performed an experiment to show as a percentage the 
number of non-splits of a CU at any level of hierarchy in a 
CTB. In this experiment, we have tested four sequences with 
different resolutions for four QP values and observed the CUs 
which are not split for different PU_WFs. The test sequences 
have a moderate amount of motion throughout the sequence. 
The first few frames (20 frames) are considered in this 
experiment. The result of this experiment is shown in Table 2. 
 

 

Fig. 4. Four PU partition types in HEVC. 
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Table 1. Motion activity and PU_WF. 

Mode Motion activity PU_WF

SKIP Motionless homogeneous region 0 

INTER 2N×2N Slow motion 1 

INTER 2N×N and N×2N Between slow and moderate 2 

Other INTER and INTRA Complex motion or texture 3 

 

Table 2. Percentage of CUs that are not split at the next level. 

Sequence 
CUs that are not split (%) 

PU_WF = 0 PU_WF = 1 PU_WF = 2 PU_WF = 3

Nebula (A) 97.15 63.21 45.95 18.93 

Park Scene (B) 91.35 58.98 42.36 16.68 

Party Scene (C) 95.16 62.33 43.24 15.29 

Blowing Bubbles (D) 93.51 61.32 41.68 11.81 

Average 94.29 61.46 43.30 15.67 
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In this table, the average of four QP values for each sequence is 
given. Form this table, it is clear that when PU_WF is 0 (SKIP 
mode), then there is a very high chance that the CU will not 
split at the next level. Hence, if PU_WF is 0, then we can 
directly say that there is no need to split the CU, which is 
basically the ECU algorithm [3]. On the other hand, if PU_WF 
is 1 or 2, then there is a significant chance that the CU will not 
split in the next level.  

However, the average percentage of non-splitting CUs 
ranges from 40% to 60%. Hence, it will be not wise to directly 
make any decision about the splitting of a CU without further 
investigation. But in this stage, we can at least be confident that 
a CU with PU_WF of 1 or 2 has a relatively high chance of not 
splitting at the next level. Finally, for the last group, from this 
experiment, we can say that it has quite a high chance of 
splitting at the next level. 

3. Local Average of RD Cost Calculation 

As we have mentioned in the previous subsection, we need 
to investigate further CUs that have a PU_WF of 1 or 2. We 
have calculated a local average of the RD cost values of all 
encoded CUs. This parameter is not a static value as it takes the 
values dynamically from the encoded CUs. In this process, 
after encoding a CU, the final PU mode and the corresponding 
RD cost values are checked. A running average is calculated 
for the final RD cost value. The calculation procedure for the 
local average is shown in Fig. 5 as a flow chart.  

This parameter is basically a running average of the RD cost 
values of different dimension of CUs and the corresponding  
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Fig. 5. Flow chart for local average of RD-cost-calculation
algorithm. 
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Table 3. Percentage of CUs not split at the next level if a particular 
CU’s RD cost < avgd

wf. 

Sequences CU size
PU_WF 

0 1 2 3 

Nebula (A) 

64 × 64 72.56 72.96 68.21 2.63 

32 ×32 73.24 71.36 67.36 7.36 

16 × 16 78.24 72.36 68.65 5.32 

Park Scene (B)

64 × 64 72.35 69.36 66.32 6.35 

32 × 32 69.35 68.34 64.23 7.23 

16 × 16 68.23 67.29 66.37 8.28 

Party Scene (C)

64 × 64 78.25 73.25 68.48 2.21 

32 × 32 76.35 72.39 71.24 1.58 

16 × 16 77.84 71.54 72.45 4.23 

Blowing 
Bubbles (D) 

64 × 64 69.32 73.21 71.54 2.23 

32 × 32 71.25 71.23 71.11 5.41 

16 × 16 72.23 72.84 69.18 2.71 

 

 
PU_WFs. This average can be calculated using equations (5) 
and (6) 
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We have performed an experiment to calculate the 
probability of a non-splitting CU when the RD cost of the CU 
is less than its local average RD cost. The result is shown in 
Table 3. It is clear that for PU_WF values of 0, 1 and 2, the 
probability is within 65% to 75%. In this experiment, we have 
used four sequences with different resolutions.  

4. Absolute Value of Motion Vector Calculation 

An absolute motion vector (MV) is also calculated in our 
algorithm. This is basically an average of the MVs from both 
List_0 and List_1 in the HM reference software. To simplify 
the calculation of the absolute MV, we only use the magnitudes 
of the x- and y-MV direction, as shown in (7) 
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i
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In this context, we have assumed that a CU with low motion 
should have a high chance of not splitting. Since the MVabs is 
directly related to the motion of a CU, we can infer that a CU 
with a low MVabs value has a high chance of not splitting in the 
current hierarchy of the CTB. To justify our assumption, we 
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Table 4. Percentage of CUs not split at the next level for different 
MVabs values. 

Sequence 
CUs which are not split (%) 

MVabs = 0 1≤MVabs≤2 3≤MVabs≤5 MVabs >5 

Nebula (A) 76.15 4.36 2.14 1.22 

Park Scene (B) 72.96 3.51 3.26 1.96 

Party Scene (C) 71.53 2.79 2.12 2.13 

Blowing 
Bubbles (D) 

68.73 3.92 2.73 1.27 

Average 72.34 3.64 2.56 1.64 

 

 
have performed another experiment in the same environment 
as discussed in section II, subsection 2. In this experiment, we 
have checked the percentage of CUs which are not split for 
different values of MVabs. The result is shown in Table 4. From 
this table, it is clear that for MVabs = 0, there is quite a high 
chance that the corresponding CU will not split. For this reason, 
we have included this condition when checking for the chance 
of a CU splitting. Since the probability of a non-split is not so 
high (65% to 75%), we cannot take any straightforward 
decision regarding features like avgd

wf or MVabs (see Tables 3 
and 4). Hence, we need to combine this with other features in 
our main algorithm.  

5. Proposed CU-Splitting Termination Algorithm 

The proposed algorithm can be divided into two stages. In 
the first stage, only the CTU is considered while we do not 
have any information from higher levels. Hence, in this stage, 
the ratio function cannot be calculated. On the other hand, in 
the second stage, other higher level CUs are considered.  

In this algorithm, initially we are checking PU_WF. If 
PU_WF is 0 (which means SKIP mode), then the decision is 
taken that there is no need for further splitting. On the other 
hand, for PU_WF values of 1 and 2, we cannot make any 
immediate decision. Hence, we need to check some other 
parameters. Since it is a two-stage algorithm, for both of the 
stages the parameters which are checked are different. For 
CTU, only MVabs and local average-RD cost of a suitable 
dimension of PU are considered for PU_WF values of 1 and 2. 
Otherwise, we have to check the ratio function for the non-
CTU case. In this case, ratio function MVabs and local average-
RD cost of suitable dimension of PU are checked for PU_WF 
values of 1 and 2. The final decision as to whether the CU will 
be split further it is taken based on the above mentioned 
checking of the parameters. The pseudocode of the proposed 
algorithm is given below. The PU_WF is used as an input and 

the output is CU_split flag.  
 
Algorithm : CU-Splitting Termination (CST) Algorithm 
input: PU_WF, CU structure  
output: CU_split. 
1: if PU_WF = 0 then 
2:     CU_split = 0 
3: end if 
4: else 
5:     calculate RD cost (RD) and MVabs of Current CU 
6:     if CTU then 
7:        if PU_WF= 1 then 
8:          if RD < avg RD cost of 2N×2N  
            and MVabs= 0 then 
9:              CU_split = 0. 
10:          end if 
11:      end if 
12:      else if PU_WF = 2 then 
13:         if RD < (avg RD cost of 2N×N, avg RD cost  
           of N×2N and avg RD cost of SKIP)   
           and MVabs= 0 then 
14:            CU_split = 0. 
15:  end if 
16:      end if 
17:      else CU_split = 1. 
18:   end if 
19:   else 
20:      calculate ratio function (R) 
21:      if PU_WF = 1 then 
22:          if RD < avg RD cost of 2N×2N  

and R<0.25 then 
23:            CU_split = 0.  
24:          end if 
25:    end if 
26:        else if PU_WF= 2 then 
27:           if RD < (avg RD cost of 2N×N,  

avg RD cost of N×2N) and MVabs = 0 and  
R < 0.25  
then 

28:              CU_split = 0. 
29:           end if 
30:       end if 
31:      else CU_split = 1. 
32:      end else 
33:   end else 
34:   Update avg RD cost of 2N×2N, avg RD cost of 2N×N,  

avg RD cost of N×2N and avg RD cost of SKIP. 

 

III. Experimental Results 

1. Test Condition 

The proposed CST algorithm has been implemented in HM 
reference software, version 10.0. All simulation experiments  
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Table 5. Test sequence description. 

Sequence  
name 

Class 
Dimension 

(pixels) 
Frame rate per 
second (fps) 

Description 

Blowing 
Bubbles 

D 416×240 50 
Medium motion  
with zoom out 

BQ Square D 416×240 60 
Synthetic with  

camera movement

Basketball Pass D 416×240 50 
High motion    

with rich texture 

Race Horses D 416×240 30 
Medium motion  
with rich texture 

Basketball Drill C 832×480 50 High motion 

Party Scene C 832×480 50 
Medium motion  

with zoom-in effect

Race Horses C C 832×480 30 
Medium motion  
with rich texture 

BQ Mall C 832×480 60 
Medium motion with 

camera movement

Basketball 
Drive 

B 1,920×1,080 50 
High motion    

with rich texture 

Cactus B 1,920×1,080 50 
Medium motion  
with rich texture 

Kimono B 1,920×1,080 24 
Medium motion  
with rich texture 

Park Scene B 1,920×1,080 24 
Medium motion  
with rich texture 

BQ Terrace B 1,920×1,080 60 
Medium motion with 

camera movement

Traffic A 2,560×1,600 30 
Medium motion  
with rich texture 

People on 
Street 

A 2,560×1,600 30 
Medium motion  
with rich texture 

Nebula A 2,560×1,600 60 
Medium motion with 

rich texture and 
camera movement

Steam 
Locomotive 

A 2,560×1,600 60 
Medium motion  
with rich texture 

 

 

are conducted on a PC with Intel Core (TM) i7-2600K 
processor having 3.4 GHz clock speed and 16 GB RAM. The 
test conditions are set as follows: 

1. For each test sequence, the first 100 frames are encoded 
with group of pictures, size 8. 

2. The QP is set at 22, 27, 32, and 37. 
3. All experiments are performed in random-access mode. 
4. Fast-encoder setting and fast decision for merge RD cost are 

on. 
5. Cbf fast-mode setting and early SKIP detection options are off. 
6. The test sequences have different resolution and belong to 

different classes. The description of different test sequences is 
given in Table 5. We have performed our experiments in 

random-access mode. Hence, Class-E sequences are not 
considered. 

2. Performance Evaluation in HM 10.0 

First of all, we have evaluated our algorithm with HM 
reference software, version 10.0. In this experiment, we have 
checked three parameters: required time to encode the video 
sequence, the number of bits in the encoded bit stream, and the 
corresponding peak signal-to-noise ratio (PSNR) value. In 
Table 6, the time reduction of the proposed algorithm 
compared with the original HM 10.0 is shown. In Table 5, QP 
values are shown for each sequence and the parameter ΔT is 
calculated using the following equation: 

100%,original proposed

original

Time Time
T

Time

−
Δ = ×       (8) 

where Timeoriginal is the required time to encode the video 
sequence in HM 10.0 under the given test condition in section 
III, subsection 1. Timeproposed is the required time after 
implementing the proposed CST algorithm in HM 10.0 in the 
same experimental environment. 

From this table, it is quite clear that our proposed algorithm 
 

Table 6. Time reduction in proposed algorithm. 

Sequence  

name 

∆T % Avg for 
all QPsQP=22 QP=27 QP=32 QP=37 

Blowing Bubbles –25.24 –37.74 –59.21 –47.45 –42.41

BQ Square –31.23 –40.42 –52.05 –59.74 –45.87

Basketball Pass –26.40 –38.73 –36.30 –46.07 –36.87

Race Horses –12.95 –17.11 –23.48 –34.67 –22.05

Basketball Drill –31.35 –34.01 –41.69 –49.66 –39.18

Party Scene –25.53 –35.76 –51.21 –45.37 –39.47

Race Horses C –18.62 –27.98 –37.81 –45.56 –32.50

BQ Mall –24.82 –31.11 –38.38 –45.56 –34.97

Basketball Drive –30.73 –38.61 –45.59 –52.16 –41.77

Cactus –32.62 –43.86 –49.79 –55.73 –45.50

Kimono –21.36 –29.37 –39.10 –49.72 –34.89

Park Scene –31.45 –42.54 –45.32 –52.21 –42.88

BQ Terrace –25.54 –37.65 –41.43 –51.34 –38.99

Traffic –24.43 –34.85 –42.32 –51.67 –38.32

People on Street –28.32 –33.54 –41.67 –50.21 –37.18

Nebula –20.32 –29.56 –37.32 –48.56 –33.94

Steam 
Locomotive 

–26.32 –31.43 –40.43 –50.75 –36.48

Average –26.05 –34.36 –43.24 –49.02 –38.03
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Table 7. Performance and quality degradation of proposed algorithm.

Sequence name ∆PSNR ∆Bit % BD Rate 

Blowing Bubbles – 0.084 – 0.199 2.0 

BQ Square – 0.115 – 0.407 2.3 

Basketball Pass – 0.065 0.222 1.8 

Race Horses – 0.093 0.962 3.1 

Basketball Drill – 0.056 – 0.017 1.4 

Party Scene – 0.110 0.901 2.7 

Race Horses C – 0.055 – 0.040 1.3 

BQ Mall – 0.097 0.094 2.5 

Basketball Drive 0.016 – 0.201 0.4 

Cactus – 0.038 – 0.430 1.2 

Kimono – 0.031 – 0.365 0.5 

Park Scene – 0.036 – 0.430 1.2 

BQ Terrace – 0.056 – 0.018 1.4 

Traffic – 0.061 0.224 1.7 

People on Street – 0.039 – 0.510 1.3 

Nebula – 0.101 – 0.410 2.4 

Steam Locomotive – 0.040 – 0.520 1.4 

Average – 0.064 0.067 1.68 

 

 
gives on average a 38.03% time reduction, with a maximum 
value of 59.74%. For some sequences (like Race Horses), it 
gives a relatively low time-reduction factor, due to the presence 
of high motion complexity and rich texture in the sequence.  

To evaluate the performance and quality degradation of the 
proposed algorithm, we have checked the encoded bits and 
PSNR. We have defined two parameters, ΔPSNR and ΔBit, to 
calculate the quality degradation. These two parameters are 
calculated using the following equations, (9) and (10), 
respectively: 

 ,original proposedPSNR PSNR PSNR−Δ =         (9) 

100%.original proposed

original

Bit Bit
Bit

Bit

−
Δ = ×        (10) 

The performance degradation in our proposed algorithm is 
shown in Table 7. In this table, the average value of each 
sequence is given in the row. Also, the Bjontegaard Delta (BD) 
rate is shown in Table 7 for each sequence. The BD rate 
includes both BD-PSNR and BD-Bitrate [22]. 

For higher-resolution video sequences, the proposed 
algorithm gives a better result. To justify this, we have tested 
the same sequence (Race Horses) for different resolutions  
(416 pixels × 240 pixels and 832 pixels × 480 pixels). The  

 

Fig. 6. RD curves: (a) Race Horses, (b) Party Scene, and (c)
Cactus sequences. 
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results are given in Table 6 and Table 7. For low resolution 
(416 × 240), the proposed CST algorithm produces a 22.05% 
decrease in time with 3.1 BD rate for Race Horses. On the 
other hand, for higher resolutions (832 × 480), it gives only  
1.3 BD rate degradation with a 32.5% time-reduction factor.  

The RD curves for the three sequences (Race Horses, Party 
Scene, and Cactus), with different resolutions for our method 
and the original HM software 10.0, are shown in Fig. 6. Our 
method achieved performance that is similar to the original 
HM encoder, especially at a low bit rate. At a high bit rate, our 
method suffers a small loss in quality. 

3. Performance Comparison 

We have compared the proposed CST algorithm with ECU 
[3]. Both of the algorithms are implemented in HM 10.0 under 
the same test conditions as discussed in section III, subsection 1. 
In both of the algorithms, we have compared PSNR, number 
of bits, and time consumption. The parameters which are 
considered in this comparison are calculated using equations  
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Table 8. Performance comparison with ECU [3]. 

Sequence Name ∆PSNRECU ∆BitECU% ∆BDECU ∆TECU% 

Blowing Bubbles – 0.039 0.566 – 1.6 – 9.37 

BQ Square – 0.058 0.772 – 2.1 – 8.37 

Basketball Pass – 0.015 0.974 – 1.3 – 8.50 

Race Horses – 0.044 1.597 – 2.5 – 8.70 

Basketball Drill – 0.017 0.794 – 1.2 – 9.93 

Party Scene – 0.050 0.842 – 2.1 – 8.80 

Race Horses C – 0.016 0.525 – 1.0 – 10.57 

BQ Mall – 0.039 0.779 – 1.9 – 8.30 

Basketball Drive 0.000 0.108 – 0.1 – 13.07 

Cactus – 0.005 0.124 – 0.4 – 15.10 

Kimono 0.004 0.137 0 – 13.07 

Park Scene – 0.016 0.432 – 0.8 – 11.21 

BQ Terrace – 0.017 0.573 – 0.9 – 12.65 

Traffic – 0.009 0.624 – 0.7 – 12.89 

People on Street – 0.016 0.741 – 0.8 – 13.59 

Nebula – 0.018 0.834 – 1.1 – 12.19 

Steam Locomotive – 0.009 0.847 – 0.7 – 11.67 

Average – 0.021 0.662 – 1.12 – 11.05 

 

 
(11)–(13). In Table 8, the performance comparison is given. 
Form this result, it is inferred that our proposed algorithm is 
superior in time reduction over ECU, on average 11% of the 
time. Apart from that, the quality (PSNR and bit) in both of the 
algorithms are very similar 

,ECU ECU proposedPSNR PSNR PSNRΔ = −        (11) 

100%,
ECU proposed

ECU
ECU

Bit Bit
Bit

Bit

−
Δ = ×

         
(12) 

100%ECU proposed
ECU

proposed

Time Time
T

Time

−
Δ = × .         (13) 

IV. Conclusion 

We have proposed a new, early CU-splitting termination 
(CST) algorithm for fast HEVC encoding, based on a ratio 
function. The RD costs for different CU dimensions and the 
PU-level motion complexity are also considered in our two-
stage algorithm. In the first stage, only the CTU is considered. 
Other dimensions are considered in the second stage. Our 
algorithm achieved, on average, a 38.03% time reduction over 
the original HM 10.0 software, with a 1.68% BD loss.  

Table 9. CST combined with other algorithms. 

Sequences 
CST+[10] CST+[12] CST+[13] 

∆T% ∆BD ∆T% ∆BD ∆T% ∆BD 

Blowing 
Bubbles 

– 40.38 0.8 – 50.91 2.8 – 48.41 2.1 

BQ Square – 42.12 0.3 – 51.22 3.1 – 47.53 2.4 

Basketball Pass – 33.24 0.8 – 45.28 2.4 – 42.89 1.8 

Race Horses – 22.78 0.9 – 41.56 3.4 – 31.51 3.0 

Basketball Drill – 35.81 0.9 – 48.27 1.9 – 42.91 1.4 

Party Scene – 35.78 1.2 – 42.93 2.9 – 44.81 2.5 

Race Horses C – 30.12 0.8 – 41.87 1.8 – 38.64 1.7 

BQ Mall – 32.12 1.1 – 45.78 2.6 – 41.78 2.6 

Basketball 
Drive 

– 39.83 0.1 – 51.56 0.8 – 46.32 0.7 

Cactus – 42.16 0.4 – 57.84 1.6 – 49.37 1.2 

Kimono – 31.53 0.2 – 48.78 0.7 – 38.72 0.9 

Park Scene – 39.11 0.6 – 52.91 1.6 – 48.61 1.2 

BQ Terrace – 35.12 0.6 – 49.78 1.5 – 43.21 1.3 

Traffic – 37.58 0.5 – 48.51 1.9 – 45.63 1.8 

People on Street – 36.15 0.9 – 46.21 1.4 – 42.67 1.3 

Nebula – 31.91 0.6 – 49.51 2.9 – 38.62 2.6 

Steam 
Locomotive

– 31.41 0.4 – 51.93 2.1 – 41.75 1.5 

Average – 35.12 0.65 – 48.52 2.08 – 43.14 1.76 

 

 
Compared with ECU [3], our method achieves a better than 
11.05% time-reduction factor. 

Apart from that, we have combined our algorithm with other 
related algorithms. There are three algorithms that have been 
reported which are related with INTER mode decision [10]–
[12]. Among them, the performance of the combined 
algorithms of CST and [11] are not very impressive. Hence in 
Table 9, we have shown the performance of the combined 
algorithms CST+[10] and CST+[12]. While we combine the 
proposed algorithm with [10], it gives a more robust 
performance in terms of quality loss. In this implementation, 
we have included the adaptive CU depth-range estimation [10]. 
Moreover, the early termination techniques proposed in [10] 
use motion homogeneity; and RD cost–based and SKIP-based 
checking, which are incorporated here. However, the time-
saving factor is degraded in this case, but it gives lower BD 
loss. On the other hand, [12] and CST give better time 
reduction with insignificant high-BD loss. In this 
implementation, we have included the features of coded block 
flags (CBF) of the INTER 2N × 2N mode (xcbf), the side 
information in RD cost (xsi), the CU depth of the co-located 
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CU (xtp), the RD cost difference between SKIP and INTER  
2N × 2N mode (xdrc), and the sum of absolute transformed 
difference between prediction and original pixel values (xstd), 
which are discussed in [12]. Moreover, we have combined a 
related work for CU splitting in a INTRA mode decision 
algorithm [13]. In this implementation, we have considered 
only the first part of [13], which is related with CU splitting. 
However, we have implemented in this work the early 
termination of CU cost calculation, which is discussed in [13] 
in detail. In Table 9, the performance of CST+[13] is given. 
This combined algorithm provides a slight improvement in 
time-saving factor, with similar BD loss. 
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