
ETRI Journal, Volume 36, Number 3, June 2014 © 2014 Kalyan Goswami et al. 407
http://dx.doi.org/10.4218/etrij.14.0113.0458

A new-generation video coding standard, named High
Efficiency Video Coding (HEVC), has recently been
developed by JCT-VC. This new standard provides a
significant improvement in picture quality, especially for
high-resolution videos. However, one the most important
challenges in HEVC is time complexity. A quadtree-based
structure is created for the encoding and decoding
processes and the rate-distortion (RD) cost is calculated
for all possible dimensions of coding units in the quadtree.
This provides a high encoding quality, but also causes
computational complexity. We focus on a reduction
scheme of the computational complexity and propose a
new approach that can terminate the quadtree-based
structure early, based on the RD costs of the parent and
current levels. Our proposed algorithm is compared with
HEVC Test Model version 10.0 software and a previously
proposed algorithm. Experimental results show that our
algorithm provides a significant time reduction for
encoding, with only a small loss in video quality.

Keywords: HEVC, coding tree block, coding unit, CU

splitting.

Manuscript received May 7, 2013; revised Oct. 22, 2013; accepted Nov. 11, 2013.

This research was supported by the Korea Communications Commission, Korea, under the

ETRI R&D support program supervised by the Korea Communications Agency (KCA-2012-

11921-02001).
Kalyan Goswami (phone: +82 41 530 2271, iit.kalyan@gmail.com) and Byung-Gyu Kim

(corresponding author, bg.kim@mpcl.sunmoon.ac.kr) are with the Department of Computer
Engineering, Sun Moon University, Asan, Rep. of Korea.

Dongsan Jun (hopeof@mail.kaist.ac.kr), Soon-Heung Jung (zeroone@etri.re.kr), and Jin
Soo Choi (chitos@mail.kaist.ac.kr) are with the Broadcasting & Telecommunications Media
Research Laboratory, ETRI, Daejeon, Rep. of Korea.

I. Introduction

Recently, ISO-IEC/MPEG and ITU-T/VCEG formed the
Joint Collaborative Team on Video Coding (JCT-VC), which
developed the next-generation video coding standard called
High Efficiency Video Coding (HEVC) [1]. The major goal of
HEVC was to achieve a significant improvement in coding
efficiency, compared to H.264/AVC [2], especially with high-
resolution video content.

The video encoding and decoding processes in HEVC are
composed of three units: a coding unit (CU) for the root of the
transform quadtree, as well as a prediction mode for the
INTER/SKIP/INTRA prediction; a prediction unit (PU) for
coding the mode decision, including motion estimation and
rate-distortion (RD) optimization; and a transform unit (TU)
for transform coding and entropy coding. Initially, a frame is
divided into a sequence of its largest non-overlapping coding
units, called a coding tree unit (CTU). A CTU can be
recursively divided into smaller CUs and made flexible using
quadtree partitioning, which is called a coding tree block
(CTB).

A CTU has a block structure size of 64 × 64 pixels, which
can be decomposed into four 32 × 32 pixels CUs. Further still,
each 32 × 32 pixels CU can be divided into four CUs of 16 × 16
pixels. This decomposition process can continue to CUs of up
to 8 × 8 pixels blocks. That means the 8 × 8 pixels block is the
smallest possible for a CU. Moreover, for the different
combinations of CU structures, different CTBs are generated
for a single CTU. For each CTB, RD cost value is calculated.
The CTB which has the minimum RD cost value is considered
as the best one. The illustration of the CTB structure for a CTU
is given in Fig. 1(a). In Fig. 1, a 64 × 64 pixels CTU block is
shown divided into smaller blocks of CUs. Upon calculating

Early Coding Unit–Splitting Termination Algorithm for
High Efficiency Video Coding (HEVC)

Kalyan Goswami, Byung-Gyu Kim, Dongsan Jun, Soon-Heung Jung, and Jin Soo Choi

408 Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0458

Fig. 1. (a) CTB structure which provides the lowest RD cost for
CTU and (b) Corresponding CTU partitioning for the best
CTB structure.

64 × 64
32 × 32
16 × 16
8 × 8

This combination provides
the lowest RD cost

(a)

CTU
partitioning

CTB structure

64×64

32×32 32×32 32×32 32×32

16×16

8×8
8×8 8×8

8×8
16×16

16×16 16×16 16×16
16×16

16×16

16×16

8×8
8×8 8×8 8×8

8×8
8×8 8×8

8×88×8
8×8 8×8

8×8

(b)

8×8
8×8 8×8

8×8

the RD cost for every combination, the CUs which are under
the red dotted part of Fig. 1(a) give the minimum RD value.
The corresponding CTU partitioning and CTB structure for
this particular (best) combination is shown in Fig. 1(b).

The CTB is an efficient representation of variable block sizes
so that regions of different sizes can be coded with fewer bits
while maintaining the same quality. It is possible to encode
stationary or homogeneous regions with a larger block size,
resulting in a smaller side-information overhead. On the other
hand, the CTB structure dramatically increases the
computational complexity. As an example, if a frame has
dimensions of 704 × 576 pixels, then it will be decomposed
into 99 (11 × 9) CTUs, and a separate CTB will be created for
each CTU. For each CTB, 85 calculations are involved for
different CU sizes. As a result, 8,415 CU calculations are
required for the CTB structure, whereas only 1,584
calculations are needed for a 16 × 16 macroblock, as was used
in the previous standard (H.264/AVC). From this analysis, it is

clear that the new CTB structure in HEVC greatly increases the
computational complexity. From the viewpoint of real-time
applications, we need faster video encoders to support real-time
video services. Hence, it is important to design a HEVC
encoder which can encode a video stream so as to achieve a
similar bit rate and quality but also a reduction in encoding
time, while comparing with the HEVC Test Model (HM)
reference software as a benchmark.

Only a few reports have been published regarding reducing
the CTB computational complexity. In [3], a proposed novel
early-CU termination algorithm, commonly known as ECU,
was integrated into the HM reference software. According to
ECU, no further processing of sub-trees is required when the
current CU selects SKIP mode as the best prediction mode at
the current CU depth. In [4], it is shown that when the cost of a
current CU is lower than the sum of the costs of CUs
belonging to the subtrees of the current CU, then no further
processing of subtrees is required. In [5], an early partition
decision algorithm is presented that attempts to terminate the
mode decision process after checking the INTER mode with
each of the PU partition types. Some fast-termination
algorithms have been reported to explore other components in
HEVC [6]–[9].

In [10], an early CU size-determination algorithm has been
reported. In this work, the authors have exploited two fast
approaches — adaptive depth-range determination and early
termination of unnecessary motion estimation on small CU
sizes. Supervised learning–based algorithms have also been
used for estimating the CU size using features specified in [11],
[12]. A Bayesian decision rule has been used in [11] and the
supported vector machine was applied in [12] to determine the
CU size before the general RD optimization technique in HM
reference software. All the above mentioned algorithms are
related with INTER prediction. On the other hand, a fair
number of works have been reported in fast INTRA-mode
decision. In [13], variance values of coding-mode costs are
used to terminate the current CU mode decision as well as TU
size selection. A two-stage process has been reported in [14],
where in the first stage texture complexity of different CUs are
analyzed, followed by an elimination process for small
prediction unit candidates for current blocks in INTRA mode.
In [15], a coarse INTRA-mode decision algorithm is applied
by first using the Hadamard transform. Then, a fine refinement
is done to reduce the complexity of the INTRA-mode decision.
A gradient-based approach has been used in [16] for fast
INTRA prediction. Apart from that, TU splitting approaches
are also used for fast mode decision. In [17], a residual
quadtree mode decision algorithm has been reported by
replacing the original depth-first mode decision process by a
merge-and-split process.

ETRI Journal, Volume 36, Number 3, June 2014 Kalyan Goswami et al. 409
http://dx.doi.org/10.4218/etrij.14.0113.0458

In this paper, we are focusing on CU partitioning to reduce
the computational complexity of the CTB structure. Our main
objective is to create an algorithm that decides whether a CU
should be decomposed into four lower-dimension CUs or not.
The proposed approach should terminate the coding tree earlier
than conventional standard reference software. The proposed
algorithm is based on the RD costs of the parent and current
CUs in a CTB. Motion activity and local statistics of the RD
cost value are also considered in this context. As we have
previously mentioned, there have already been a number of
attempts at this problem. However, our proposed technique is
simple to implement and robust in nature. Moreover, it is
possible to incorporate the proposed technique into other early-
CU termination algorithms.

In the next section, our proposed approach is discussed in
detail. The experimental results are given in section III and
finally conclusions are drawn in section IV.

 II. Proposed Approach

As we have discussed in the last section, the CTB which
provides the minimum RD cost is considered to be the best for
a HEVC encoder. According to this technique, before
calculating the RD values of all possible combinations of CTB,
it is impossible to take any decision regarding CTU partitioning.
Since the main objective is to select the lowest RD cost among
all combinations in [4], it is shown that no further
decomposition is required if the CTB satisfy the condition
shown in (1), where the subscript t indicates the current level
and t+1 indicates the next level

3

cost cost 1
0

() (()).t t
i

RD CU RD CU i+
=

< ∑ (1)

Fig. 2. Available information in a CTB structure.

Depth t–1
information present

Depth t
current level

We are in this level.

CUt0 CUt1 CUt2 CUt3

r1 r2 r3 r4

CUt–1

PU TU

PU TU PU TU PU TU PU TU

CUt+10

PU TU

CUt+11

PU TU

CUt+12

PU TU

CUt+13

PU TU

Depth t+1
no information present

However, at depth t, it is not possible to get any information
about depth t+1 without splitting the CU. We can only use
information from the prior level (depth t–1). In Fig. 2, the
available information is shown for each level of hierarchy in a
CTB. Based on this situation, we use the RD cost values of the
current depth t and the previous depth (t–1) levels and propose
a ratio function, which is discussed in detail in the next
subsection.

1. Ratio Function

Let us consider that CUt–1 was split and four CUs were
created, which means (1) is not satisfied. So, we can consider
that the RD cost of CUt–1 is greater than the costs of its child
nodes, as shown in (2)

()()

()

cost 1 cost
0

3
cost0

cos

3

t 1

() (())

1.

t t
i

ti

t

RD CU RD CU i

RD CU i

RD CU

−
=

=

−

≥

=> ≤

∑

∑
 (2)

The ratio function for a CUt (i) at depth t can be defined as

3
cost

cost 1 0

(())
, where 1.

()
t

i i
t i

RD CU i
r r

RD CU − =
= ≤∑ (3)

This parameter is basically a ratio of the RD costs of the
current CU and its parent CU. When a CU is split, then it will
create four child CUs and for each newly created CU, we can
define a value for its ratio function. From (3), it can be inferred
that this parameter should have some upper limit, since the sum
of the ratio function has an upper bound of 1. It is also observed
that when the ratio function of a child is lower than its siblings,
then in the next level it has a low chance of splitting.

To justify our theoretical approach and to make an upper
bound for the ratio function, we have performed an experiment
on HM reference software for four sequences of different
dimensions. In this experiment, we have checked the ratio
functions for all encoded CUs for four quantization parameter
(QP) values, which have been split. According to our
experimental result, all the split CUs have a ratio function
below 0.25, as shown in Fig. 3. That means if a child has an
RD cost that is less than one quarter of its parent, then at the
next level it has a low chance of splitting. Moreover, to make
this decision, we do not need any information from depth t+1.
Therefore, this parameter can be used as a threshold for making
the decision to split a current CU in the next level.

In our proposed algorithm, we have incorporated the ratio
function for different motion activities in a video sequence. The
details of the motion activity are discussed in the next
subsection.

410 Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0458

Fig. 3. Ratio function analysis of four video sequences.

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

22 27 32 37

Ratio funcion

QP

Nebula (A)
Park Scene (B)
Party Scene (C)
Blowing Bubbles (D)

 2. Motion-Activity Information at PU Level

A CU is consisted of two basic units: PU and TU. All
prediction-related calculations and algorithms are under the
umbrella of PU. There are three kinds of predictions possible in
HEVC. These are SKIP, INTRA and INTER mode,
predictions. However, in SKIP mode, there is no need to
encode a CU at all — it can be predicted directly from the
reference frame. Generally, homogeneous and motionless
regions are encoded as SKIP mode. According to the ECU
algorithm [3], if a CU is coded as SKIP mode then no further
splitting of that CU is required. Motivated by this fact, in this
work, we have explored other prediction modes of PU.

As shown in Fig. 4, INTER and INTRA predictions have
different kinds of PU modes. In HEVC encoders, SKIP mode
is calculated first, followed by INTER and INTRA modes. The
RD values for all kinds of modes for both INTER and INTRA
(as shown in Fig. 4) are calculated in HEVC encoders to get
the best PU mode. After the completion of all mode
calculations, the CU is divided into four CUs of lower
dimensions. PU mode calculations of each child CU are done
recursively.

Generally, complex motion and rich-texture regions are
encoded as low dimension INTER or INTRA PU modes. We
have classified all the prediction modes according to motion
activity (Table 1). However, to classify the prediction modes
into different motion activities is not a new concept. This kind
of motion activity was explored to a greater extent in the
H.264/AVC-based codec system [18]–[20]. In this work, we
have classified the PU modes into four motion activities:
motionless region, slow-moving region, moderate motion–
based region, and complex motion or texture-based region. In
Table 1, our classified motion activity and the corresponding
PU modes are shown. This is basically a labeling of the PU
dimension, which incorporates negligible computational
complexity of the overall process [21]. However, we have

defined a parameter named as PU-mode weighting factor
(PU_WF). This parameter simply represents each group of
motion activity–based PU modes, as shown in Table 1.

We have assumed that if a region in a video sequence has
relatively slow motion activity compared to other regions, then
there is a high chance that the slow-moving region will not split
in that hierarchy of the CTB. Motivated by this concept, we
have performed an experiment to show as a percentage the
number of non-splits of a CU at any level of hierarchy in a
CTB. In this experiment, we have tested four sequences with
different resolutions for four QP values and observed the CUs
which are not split for different PU_WFs. The test sequences
have a moderate amount of motion throughout the sequence.
The first few frames (20 frames) are considered in this
experiment. The result of this experiment is shown in Table 2.

Fig. 4. Four PU partition types in HEVC.

SKIP: 2N×2N

INTER: 2N×2N, 2N×N, N×2N, N×N,
2N×nU, 2N×nD, nL×2N, nR×2N

INTRA: 2N×2N, N×N

4 recursive calls for lower
dimensions of CUs

Table 1. Motion activity and PU_WF.

Mode Motion activity PU_WF

SKIP Motionless homogeneous region 0

INTER 2N×2N Slow motion 1

INTER 2N×N and N×2N Between slow and moderate 2

Other INTER and INTRA Complex motion or texture 3

Table 2. Percentage of CUs that are not split at the next level.

Sequence
CUs that are not split (%)

PU_WF = 0 PU_WF = 1 PU_WF = 2 PU_WF = 3

Nebula (A) 97.15 63.21 45.95 18.93

Park Scene (B) 91.35 58.98 42.36 16.68

Party Scene (C) 95.16 62.33 43.24 15.29

Blowing Bubbles (D) 93.51 61.32 41.68 11.81

Average 94.29 61.46 43.30 15.67

ETRI Journal, Volume 36, Number 3, June 2014 Kalyan Goswami et al. 411
http://dx.doi.org/10.4218/etrij.14.0113.0458

In this table, the average of four QP values for each sequence is
given. Form this table, it is clear that when PU_WF is 0 (SKIP
mode), then there is a very high chance that the CU will not
split at the next level. Hence, if PU_WF is 0, then we can
directly say that there is no need to split the CU, which is
basically the ECU algorithm [3]. On the other hand, if PU_WF
is 1 or 2, then there is a significant chance that the CU will not
split in the next level.

However, the average percentage of non-splitting CUs
ranges from 40% to 60%. Hence, it will be not wise to directly
make any decision about the splitting of a CU without further
investigation. But in this stage, we can at least be confident that
a CU with PU_WF of 1 or 2 has a relatively high chance of not
splitting at the next level. Finally, for the last group, from this
experiment, we can say that it has quite a high chance of
splitting at the next level.

3. Local Average of RD Cost Calculation

As we have mentioned in the previous subsection, we need
to investigate further CUs that have a PU_WF of 1 or 2. We
have calculated a local average of the RD cost values of all
encoded CUs. This parameter is not a static value as it takes the
values dynamically from the encoded CUs. In this process,
after encoding a CU, the final PU mode and the corresponding
RD cost values are checked. A running average is calculated
for the final RD cost value. The calculation procedure for the
local average is shown in Fig. 5 as a flow chart.

This parameter is basically a running average of the RD cost
values of different dimension of CUs and the corresponding

`

Fig. 5. Flow chart for local average of RD-cost-calculation
algorithm.

Beginning of a frame encoding
initialize avgd

wf and countd
wf

Encoding of CU

After encoding of a CU check CU
dimension (d) and PU_WF (wf)

wf < 3
no

yes

Calculate sumd
wf using (5)

countd
wf ++

Update avgd
wf ++ using (6)

No need to update avgd
wf

Table 3. Percentage of CUs not split at the next level if a particular
CU’s RD cost < avgd

wf.

Sequences CU size
PU_WF

0 1 2 3

Nebula (A)

64 × 64 72.56 72.96 68.21 2.63

32 ×32 73.24 71.36 67.36 7.36

16 × 16 78.24 72.36 68.65 5.32

Park Scene (B)

64 × 64 72.35 69.36 66.32 6.35

32 × 32 69.35 68.34 64.23 7.23

16 × 16 68.23 67.29 66.37 8.28

Party Scene (C)

64 × 64 78.25 73.25 68.48 2.21

32 × 32 76.35 72.39 71.24 1.58

16 × 16 77.84 71.54 72.45 4.23

Blowing
Bubbles (D)

64 × 64 69.32 73.21 71.54 2.23

32 × 32 71.25 71.23 71.11 5.41

16 × 16 72.23 72.84 69.18 2.71

PU_WFs. This average can be calculated using equations (5)
and (6)

() _ cost ,wf wf wf wf
d d d dsum avg count RD= × +

(5)

1
=

+

wf
wf d
d wf

d

sum
avg

count
. (6)

We have performed an experiment to calculate the
probability of a non-splitting CU when the RD cost of the CU
is less than its local average RD cost. The result is shown in
Table 3. It is clear that for PU_WF values of 0, 1 and 2, the
probability is within 65% to 75%. In this experiment, we have
used four sequences with different resolutions.

4. Absolute Value of Motion Vector Calculation

An absolute motion vector (MV) is also calculated in our
algorithm. This is basically an average of the MVs from both
List_0 and List_1 in the HM reference software. To simplify
the calculation of the absolute MV, we only use the magnitudes
of the x- and y-MV direction, as shown in (7)

1

0

0.5 | () | | () |
=

⎛ ⎞
= × +⎜ ⎟⎜ ⎟

⎝ ⎠
∑abs x y
i

MV MV i MV i . (7)

In this context, we have assumed that a CU with low motion
should have a high chance of not splitting. Since the MVabs is
directly related to the motion of a CU, we can infer that a CU
with a low MVabs value has a high chance of not splitting in the
current hierarchy of the CTB. To justify our assumption, we

412 Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0458

Table 4. Percentage of CUs not split at the next level for different
MVabs values.

Sequence
CUs which are not split (%)

MVabs = 0 1≤MVabs≤2 3≤MVabs≤5 MVabs >5

Nebula (A) 76.15 4.36 2.14 1.22

Park Scene (B) 72.96 3.51 3.26 1.96

Party Scene (C) 71.53 2.79 2.12 2.13

Blowing
Bubbles (D)

68.73 3.92 2.73 1.27

Average 72.34 3.64 2.56 1.64

have performed another experiment in the same environment
as discussed in section II, subsection 2. In this experiment, we
have checked the percentage of CUs which are not split for
different values of MVabs. The result is shown in Table 4. From
this table, it is clear that for MVabs = 0, there is quite a high
chance that the corresponding CU will not split. For this reason,
we have included this condition when checking for the chance
of a CU splitting. Since the probability of a non-split is not so
high (65% to 75%), we cannot take any straightforward
decision regarding features like avgd

wf or MVabs (see Tables 3
and 4). Hence, we need to combine this with other features in
our main algorithm.

5. Proposed CU-Splitting Termination Algorithm

The proposed algorithm can be divided into two stages. In
the first stage, only the CTU is considered while we do not
have any information from higher levels. Hence, in this stage,
the ratio function cannot be calculated. On the other hand, in
the second stage, other higher level CUs are considered.

In this algorithm, initially we are checking PU_WF. If
PU_WF is 0 (which means SKIP mode), then the decision is
taken that there is no need for further splitting. On the other
hand, for PU_WF values of 1 and 2, we cannot make any
immediate decision. Hence, we need to check some other
parameters. Since it is a two-stage algorithm, for both of the
stages the parameters which are checked are different. For
CTU, only MVabs and local average-RD cost of a suitable
dimension of PU are considered for PU_WF values of 1 and 2.
Otherwise, we have to check the ratio function for the non-
CTU case. In this case, ratio function MVabs and local average-
RD cost of suitable dimension of PU are checked for PU_WF
values of 1 and 2. The final decision as to whether the CU will
be split further it is taken based on the above mentioned
checking of the parameters. The pseudocode of the proposed
algorithm is given below. The PU_WF is used as an input and

the output is CU_split flag.

Algorithm : CU-Splitting Termination (CST) Algorithm
input: PU_WF, CU structure
output: CU_split.
1: if PU_WF = 0 then
2: CU_split = 0
3: end if
4: else
5: calculate RD cost (RD) and MVabs of Current CU
6: if CTU then
7: if PU_WF= 1 then
8: if RD < avg RD cost of 2N×2N
 and MVabs= 0 then
9: CU_split = 0.
10: end if
11: end if
12: else if PU_WF = 2 then
13: if RD < (avg RD cost of 2N×N, avg RD cost
 of N×2N and avg RD cost of SKIP)
 and MVabs= 0 then
14: CU_split = 0.
15: end if
16: end if
17: else CU_split = 1.
18: end if
19: else
20: calculate ratio function (R)
21: if PU_WF = 1 then
22: if RD < avg RD cost of 2N×2N

and R<0.25 then
23: CU_split = 0.
24: end if
25: end if
26: else if PU_WF= 2 then
27: if RD < (avg RD cost of 2N×N,

avg RD cost of N×2N) and MVabs = 0 and
R < 0.25
then

28: CU_split = 0.
29: end if
30: end if
31: else CU_split = 1.
32: end else
33: end else
34: Update avg RD cost of 2N×2N, avg RD cost of 2N×N,

avg RD cost of N×2N and avg RD cost of SKIP.

III. Experimental Results

1. Test Condition

The proposed CST algorithm has been implemented in HM
reference software, version 10.0. All simulation experiments

ETRI Journal, Volume 36, Number 3, June 2014 Kalyan Goswami et al. 413
http://dx.doi.org/10.4218/etrij.14.0113.0458

Table 5. Test sequence description.

Sequence
name

Class
Dimension

(pixels)
Frame rate per
second (fps)

Description

Blowing
Bubbles

D 416×240 50
Medium motion
with zoom out

BQ Square D 416×240 60
Synthetic with

camera movement

Basketball Pass D 416×240 50
High motion

with rich texture

Race Horses D 416×240 30
Medium motion
with rich texture

Basketball Drill C 832×480 50 High motion

Party Scene C 832×480 50
Medium motion

with zoom-in effect

Race Horses C C 832×480 30
Medium motion
with rich texture

BQ Mall C 832×480 60
Medium motion with

camera movement

Basketball
Drive

B 1,920×1,080 50
High motion

with rich texture

Cactus B 1,920×1,080 50
Medium motion
with rich texture

Kimono B 1,920×1,080 24
Medium motion
with rich texture

Park Scene B 1,920×1,080 24
Medium motion
with rich texture

BQ Terrace B 1,920×1,080 60
Medium motion with

camera movement

Traffic A 2,560×1,600 30
Medium motion
with rich texture

People on
Street

A 2,560×1,600 30
Medium motion
with rich texture

Nebula A 2,560×1,600 60
Medium motion with

rich texture and
camera movement

Steam
Locomotive

A 2,560×1,600 60
Medium motion
with rich texture

are conducted on a PC with Intel Core (TM) i7-2600K
processor having 3.4 GHz clock speed and 16 GB RAM. The
test conditions are set as follows:

1. For each test sequence, the first 100 frames are encoded
with group of pictures, size 8.

2. The QP is set at 22, 27, 32, and 37.
3. All experiments are performed in random-access mode.
4. Fast-encoder setting and fast decision for merge RD cost are

on.
5. Cbf fast-mode setting and early SKIP detection options are off.
6. The test sequences have different resolution and belong to

different classes. The description of different test sequences is
given in Table 5. We have performed our experiments in

random-access mode. Hence, Class-E sequences are not
considered.

2. Performance Evaluation in HM 10.0

First of all, we have evaluated our algorithm with HM
reference software, version 10.0. In this experiment, we have
checked three parameters: required time to encode the video
sequence, the number of bits in the encoded bit stream, and the
corresponding peak signal-to-noise ratio (PSNR) value. In
Table 6, the time reduction of the proposed algorithm
compared with the original HM 10.0 is shown. In Table 5, QP
values are shown for each sequence and the parameter ΔT is
calculated using the following equation:

100%,original proposed

original

Time Time
T

Time

−
Δ = × (8)

where Timeoriginal is the required time to encode the video
sequence in HM 10.0 under the given test condition in section
III, subsection 1. Timeproposed is the required time after
implementing the proposed CST algorithm in HM 10.0 in the
same experimental environment.

From this table, it is quite clear that our proposed algorithm

Table 6. Time reduction in proposed algorithm.

Sequence

name

∆T % Avg for
all QPsQP=22 QP=27 QP=32 QP=37

Blowing Bubbles –25.24 –37.74 –59.21 –47.45 –42.41

BQ Square –31.23 –40.42 –52.05 –59.74 –45.87

Basketball Pass –26.40 –38.73 –36.30 –46.07 –36.87

Race Horses –12.95 –17.11 –23.48 –34.67 –22.05

Basketball Drill –31.35 –34.01 –41.69 –49.66 –39.18

Party Scene –25.53 –35.76 –51.21 –45.37 –39.47

Race Horses C –18.62 –27.98 –37.81 –45.56 –32.50

BQ Mall –24.82 –31.11 –38.38 –45.56 –34.97

Basketball Drive –30.73 –38.61 –45.59 –52.16 –41.77

Cactus –32.62 –43.86 –49.79 –55.73 –45.50

Kimono –21.36 –29.37 –39.10 –49.72 –34.89

Park Scene –31.45 –42.54 –45.32 –52.21 –42.88

BQ Terrace –25.54 –37.65 –41.43 –51.34 –38.99

Traffic –24.43 –34.85 –42.32 –51.67 –38.32

People on Street –28.32 –33.54 –41.67 –50.21 –37.18

Nebula –20.32 –29.56 –37.32 –48.56 –33.94

Steam
Locomotive

–26.32 –31.43 –40.43 –50.75 –36.48

Average –26.05 –34.36 –43.24 –49.02 –38.03

414 Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0458

Table 7. Performance and quality degradation of proposed algorithm.

Sequence name ∆PSNR ∆Bit % BD Rate

Blowing Bubbles – 0.084 – 0.199 2.0

BQ Square – 0.115 – 0.407 2.3

Basketball Pass – 0.065 0.222 1.8

Race Horses – 0.093 0.962 3.1

Basketball Drill – 0.056 – 0.017 1.4

Party Scene – 0.110 0.901 2.7

Race Horses C – 0.055 – 0.040 1.3

BQ Mall – 0.097 0.094 2.5

Basketball Drive 0.016 – 0.201 0.4

Cactus – 0.038 – 0.430 1.2

Kimono – 0.031 – 0.365 0.5

Park Scene – 0.036 – 0.430 1.2

BQ Terrace – 0.056 – 0.018 1.4

Traffic – 0.061 0.224 1.7

People on Street – 0.039 – 0.510 1.3

Nebula – 0.101 – 0.410 2.4

Steam Locomotive – 0.040 – 0.520 1.4

Average – 0.064 0.067 1.68

gives on average a 38.03% time reduction, with a maximum
value of 59.74%. For some sequences (like Race Horses), it
gives a relatively low time-reduction factor, due to the presence
of high motion complexity and rich texture in the sequence.

To evaluate the performance and quality degradation of the
proposed algorithm, we have checked the encoded bits and
PSNR. We have defined two parameters, ΔPSNR and ΔBit, to
calculate the quality degradation. These two parameters are
calculated using the following equations, (9) and (10),
respectively:

 ,original proposedPSNR PSNR PSNR−Δ = (9)

100%.original proposed

original

Bit Bit
Bit

Bit

−
Δ = × (10)

The performance degradation in our proposed algorithm is
shown in Table 7. In this table, the average value of each
sequence is given in the row. Also, the Bjontegaard Delta (BD)
rate is shown in Table 7 for each sequence. The BD rate
includes both BD-PSNR and BD-Bitrate [22].

For higher-resolution video sequences, the proposed
algorithm gives a better result. To justify this, we have tested
the same sequence (Race Horses) for different resolutions
(416 pixels × 240 pixels and 832 pixels × 480 pixels). The

Fig. 6. RD curves: (a) Race Horses, (b) Party Scene, and (c)
Cactus sequences.

0 200 400 600 800 1,000 1,200 1,400 1,600
25

27

29

31

33

35

37

39

Bit rate

Y
 P

S
N

R

Race Horses

(a)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Party Screne

25
27

29

31

33

35

37

39

Y
 P

S
N

R

Bit rate

(b)

0 5,000 10,000 15,000 20,000 25,000
25

27

29

31

33

35

37

39
Y

 P
S

N
R

Cactus

Bit rate

(c)

Original HM 10.0
Proposed CST

Original HM 10.0
Proposed CST

Original HM 10.0
Proposed CST

results are given in Table 6 and Table 7. For low resolution
(416 × 240), the proposed CST algorithm produces a 22.05%
decrease in time with 3.1 BD rate for Race Horses. On the
other hand, for higher resolutions (832 × 480), it gives only
1.3 BD rate degradation with a 32.5% time-reduction factor.

The RD curves for the three sequences (Race Horses, Party
Scene, and Cactus), with different resolutions for our method
and the original HM software 10.0, are shown in Fig. 6. Our
method achieved performance that is similar to the original
HM encoder, especially at a low bit rate. At a high bit rate, our
method suffers a small loss in quality.

3. Performance Comparison

We have compared the proposed CST algorithm with ECU
[3]. Both of the algorithms are implemented in HM 10.0 under
the same test conditions as discussed in section III, subsection 1.
In both of the algorithms, we have compared PSNR, number
of bits, and time consumption. The parameters which are
considered in this comparison are calculated using equations

ETRI Journal, Volume 36, Number 3, June 2014 Kalyan Goswami et al. 415
http://dx.doi.org/10.4218/etrij.14.0113.0458

Table 8. Performance comparison with ECU [3].

Sequence Name ∆PSNRECU ∆BitECU% ∆BDECU ∆TECU%

Blowing Bubbles – 0.039 0.566 – 1.6 – 9.37

BQ Square – 0.058 0.772 – 2.1 – 8.37

Basketball Pass – 0.015 0.974 – 1.3 – 8.50

Race Horses – 0.044 1.597 – 2.5 – 8.70

Basketball Drill – 0.017 0.794 – 1.2 – 9.93

Party Scene – 0.050 0.842 – 2.1 – 8.80

Race Horses C – 0.016 0.525 – 1.0 – 10.57

BQ Mall – 0.039 0.779 – 1.9 – 8.30

Basketball Drive 0.000 0.108 – 0.1 – 13.07

Cactus – 0.005 0.124 – 0.4 – 15.10

Kimono 0.004 0.137 0 – 13.07

Park Scene – 0.016 0.432 – 0.8 – 11.21

BQ Terrace – 0.017 0.573 – 0.9 – 12.65

Traffic – 0.009 0.624 – 0.7 – 12.89

People on Street – 0.016 0.741 – 0.8 – 13.59

Nebula – 0.018 0.834 – 1.1 – 12.19

Steam Locomotive – 0.009 0.847 – 0.7 – 11.67

Average – 0.021 0.662 – 1.12 – 11.05

(11)–(13). In Table 8, the performance comparison is given.
Form this result, it is inferred that our proposed algorithm is
superior in time reduction over ECU, on average 11% of the
time. Apart from that, the quality (PSNR and bit) in both of the
algorithms are very similar

,ECU ECU proposedPSNR PSNR PSNRΔ = − (11)

100%,
ECU proposed

ECU
ECU

Bit Bit
Bit

Bit

−
Δ = ×

(12)

100%ECU proposed
ECU

proposed

Time Time
T

Time

−
Δ = × . (13)

IV. Conclusion

We have proposed a new, early CU-splitting termination
(CST) algorithm for fast HEVC encoding, based on a ratio
function. The RD costs for different CU dimensions and the
PU-level motion complexity are also considered in our two-
stage algorithm. In the first stage, only the CTU is considered.
Other dimensions are considered in the second stage. Our
algorithm achieved, on average, a 38.03% time reduction over
the original HM 10.0 software, with a 1.68% BD loss.

Table 9. CST combined with other algorithms.

Sequences
CST+[10] CST+[12] CST+[13]

∆T% ∆BD ∆T% ∆BD ∆T% ∆BD

Blowing
Bubbles

– 40.38 0.8 – 50.91 2.8 – 48.41 2.1

BQ Square – 42.12 0.3 – 51.22 3.1 – 47.53 2.4

Basketball Pass – 33.24 0.8 – 45.28 2.4 – 42.89 1.8

Race Horses – 22.78 0.9 – 41.56 3.4 – 31.51 3.0

Basketball Drill – 35.81 0.9 – 48.27 1.9 – 42.91 1.4

Party Scene – 35.78 1.2 – 42.93 2.9 – 44.81 2.5

Race Horses C – 30.12 0.8 – 41.87 1.8 – 38.64 1.7

BQ Mall – 32.12 1.1 – 45.78 2.6 – 41.78 2.6

Basketball
Drive

– 39.83 0.1 – 51.56 0.8 – 46.32 0.7

Cactus – 42.16 0.4 – 57.84 1.6 – 49.37 1.2

Kimono – 31.53 0.2 – 48.78 0.7 – 38.72 0.9

Park Scene – 39.11 0.6 – 52.91 1.6 – 48.61 1.2

BQ Terrace – 35.12 0.6 – 49.78 1.5 – 43.21 1.3

Traffic – 37.58 0.5 – 48.51 1.9 – 45.63 1.8

People on Street – 36.15 0.9 – 46.21 1.4 – 42.67 1.3

Nebula – 31.91 0.6 – 49.51 2.9 – 38.62 2.6

Steam
Locomotive

– 31.41 0.4 – 51.93 2.1 – 41.75 1.5

Average – 35.12 0.65 – 48.52 2.08 – 43.14 1.76

Compared with ECU [3], our method achieves a better than
11.05% time-reduction factor.

Apart from that, we have combined our algorithm with other
related algorithms. There are three algorithms that have been
reported which are related with INTER mode decision [10]–
[12]. Among them, the performance of the combined
algorithms of CST and [11] are not very impressive. Hence in
Table 9, we have shown the performance of the combined
algorithms CST+[10] and CST+[12]. While we combine the
proposed algorithm with [10], it gives a more robust
performance in terms of quality loss. In this implementation,
we have included the adaptive CU depth-range estimation [10].
Moreover, the early termination techniques proposed in [10]
use motion homogeneity; and RD cost–based and SKIP-based
checking, which are incorporated here. However, the time-
saving factor is degraded in this case, but it gives lower BD
loss. On the other hand, [12] and CST give better time
reduction with insignificant high-BD loss. In this
implementation, we have included the features of coded block
flags (CBF) of the INTER 2N × 2N mode (xcbf), the side
information in RD cost (xsi), the CU depth of the co-located

416 Kalyan Goswami et al. ETRI Journal, Volume 36, Number 3, June 2014
http://dx.doi.org/10.4218/etrij.14.0113.0458

CU (xtp), the RD cost difference between SKIP and INTER
2N × 2N mode (xdrc), and the sum of absolute transformed
difference between prediction and original pixel values (xstd),
which are discussed in [12]. Moreover, we have combined a
related work for CU splitting in a INTRA mode decision
algorithm [13]. In this implementation, we have considered
only the first part of [13], which is related with CU splitting.
However, we have implemented in this work the early
termination of CU cost calculation, which is discussed in [13]
in detail. In Table 9, the performance of CST+[13] is given.
This combined algorithm provides a slight improvement in
time-saving factor, with similar BD loss.

References

[1] G.J. Sullivan et al., “Overview of the High Efficiency Video Coding

(HEVC) Standard,” IEEE Trans. Circuits Syst. Video Technol., vol.

22, no. 12, Dec. 2012, pp. 1649–1668.

 [2] T. Wiegand and G.J. Sullivan, “The H.264/AVC Video Coding

Standard,” IEEE Signal Process. Mag., vol. 24, Mar. 2007, pp. 148–

153.

[3] JCT–VC document, JCTVC–F092, Coding Tree Pruning Based

CU Early Termination, Torino, Italy, July 2011.

[4] K. Choi and E.S. Jang, “Fast Coding Unit Decision Method Based

on Coding Tree Pruning for High Efficiency Video Coding,” Opt.

Eng. Lett., no. 51, vol. 3, Mar. 20, 2012.

[5] H.L. Tan et al., “On Fast Coding Tree Block and Mode Decision

for High-Efficiency Video Coding (HEVC),” IEEE Int. Conf.

Acoust., Speech Signal Process., Kyoto, Japan, Mar. 25–30, 2012,

pp. 825–828.

[6] J. Kim et al., “Adaptive Coding Unit Early Termination Algorithm for

HEVC,” IEEE Int. Conf. Consum. Electron., Las Vegas, NV, USA,

Jan. 13–16, 2012, pp. 261–262.

[7] J. Leng et al., “Content Based Hierarchical Fast Coding Unit Decision

Algorithm for HEVC,” Int. Conf. Multimedia Signal Process., Guilin,

China, May 14–15, 2011, pp. 56–59.

[8] G.V. Wallendael et al., “Improved Intra Mode Signaling for HEVC,”

IEEE Int. Conf. Multimedia Expo, Barcelona, Spain, July 11–15,

2011, pp. 1–6.

[9] W.J. Chen et al., “Reversed Intra Prediction Based on Chroma

Extraction in HEVC,” Int. Symp. Intell. Signal Process. Commun.

Syst., Chiang Mai, Thailand, Dec. 7–9, 2011, pp. 1–5.

[10] L. Shen et al., “An Effective CU Size Decision Method for HEVC

Encoders,” IEEE Trans. Multimedia, vol. 15, no. 2, Feb. 2013, pp.

465–470.

[11] X. Shen, L. Yu, and J. Chen, “Fast Coding Unit Size Selection for

HEVC Based on Bayesian Decision Rule,” Picture Coding

Symp., Krakow, Poland, May 7–9, 2012.

[12] X. Shen and L. Yu, “CU Splitting Early Termination Based on

Weighted SVM,” EURASIP J. Imag. Video Process., Jan. 2013.

[13] H. Zhang and Z. Ma, “Early Termination Schemes for Fast Intra

Mode Decision in High Efficiency Video Coding,” IEEE Int.

Symp. Circuits Syst., Beijing, China, May 19–23, 2013, pp. 45–48.

[14] G. Tian and S. Goto, “Content Adaptive Prediction Unit Size

Decision Algorithm for HEVC Intra Coding,” Picture Coding

Symp., Krakow, Poland, May 7–9, 2012, pp. 405–408.

[15] H. Zhang and Z. Ma, “Fast Intra Prediction for High Efficiency

Video Coding,” Advances Multimedia Inf. Process., Springer,

2012, pp. 568–577.

[16] W. Jiang, H. Ma, and Y. Chen, “Gradient Based Fast Mode

Decision Algorithm for Intra Prediction in HEVC,” IEEE Int.

Conf. Consum. Electron., Commun. Netw., Hubei, China, Apr.

21–23, 2012.

[17] S.-W. Teng, H.-M. Hang, and Y.-F. Chen, “Fast Mode Decision

Algorithm for Residual Quadtree Coding in HEVC,” IEEE

Visual Commun. Imag. Process., Tainan City, Tiwan, Nov. 6–9,

2011, pp. 1–4.

[18] H. Zeng, C. Cai, and K.-K. Ma, “Fast Mode Decision for

H.264/AVC Based on Macroblock Motion Activity,” IEEE Trans.

Circuits Syst. Video Technol., vol. 19, no. 4, Apr. 2009, pp. 491–

499.

[19] P.I. Hosur and K.K. Ma, “Motion Vector Field Adaptive Fast

Motion Estimation,” Int. Conf. Inf., Commun. Signal Process.,

Sydney, Australia, Nov. 9–11, 1999.

[20] B. Hilmi et al., “Fast Inter-mode Decision Algorithm for

H.264/AVC Using Macroblock Correlation and Motion

Complexity Analysis,” IEEE Int. Conf. Consum. Electron., Las

Vegas, NV, USA, Jan. 13–16, 2012, pp. 90–91.

[21] J.-H. Lee et al., “Novel Fast PU Decision Algorithm for the

HEVC Video Standard,” IEEE Int. Conf. Imag. Process.,

Melbourne, Australia, Sept. 15–18, 2013, pp. 1982–1985.

[22] X. Li, M. Wien, and J.-R. Ohm, “Rate-Complexity-Distortion

Evaluation for Hybrid Video Coding,” IEEE Int. Conf.

Multimedia Expo, Suntec City, Singapore, July 19–23, 2010, pp.

685–690.

Kalyan Goswami is a PhD student at the

Department of Computer Engineering, Sun

Moon University, Asan, Rep. of Korea. He

received his BTech degree in electronics and

telecommunication engineering from Kalyani

University, Calcutta, India, in 2004, and his MS

in Advanced Technology Development Center

from IIT Kharagpur, India, in 2011. Before joining IIT, he was working

as a programmer analyst in Cognizant Technology Solutions, Kolkata,

India. His research interests include algorithm development in the field

of Video Processing.

ETRI Journal, Volume 36, Number 3, June 2014 Kalyan Goswami et al. 417
http://dx.doi.org/10.4218/etrij.14.0113.0458

Byung-Gyu Kim received his BS degree

from Pusan National University, Busan, Rep. of

Korea, in 1996 and his MS degree from Korea

Advanced Institute of Science and Technology

(KAIST), Daejeon, Rep. of Korea in 1998. In

2004, he received a PhD degree at the

Department of Electrical Engineering and

Computer Science from Korea Advanced Institute of Science and

Technology (KAIST). In March 2004, he joined in the real-time

multimedia research team at the Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Rep. of Korea, where he was a

senior researcher. In February 2009, he joined the Division of

Computer Science and Engineering at Sun Moon University, Asan,

Rep. of Korea, where he is currently a professor. In 2007, he served as

an editorial board member of the International Journal of Soft

Computing, Recent Patents on Signal Processing, Research Journal of

Information Technology, Journal of Convergence Information

Technology, and Journal of Engineering and Applied Sciences. Also,

he is serving as an associate editor of Circuits, Systems and Signal

Processing (Springer), International Journal of Image Processing and

Visual Communication (IJIPVC), and The Scientific World Journal

(Hindawi). He was an organizing committee member of CSIP2013 in

Shenzhen, China. He also served as program committee member of

CSIP 2011, CUTE2012, EMC 2012, FCC2014, and EMC2014. He

has published over 90 international journal and conference papers in

his field. His research interests include image and video object

segmentation for content-based image coding, wireless multimedia

sensor networks, real-time multimedia communication, and intelligent

information systems for image signal processing. He is a member of

IEEE, ACM, and IEICE.

Dongsan Jun received his BS degree in

electrical engineering and computer science

from Pusan University, Busan, Rep. of Korea in

2002 and his MS and PhD degrees in electrical

engineering from Korea Advanced Institute of

Science and Technology (KAIST), Daejeon,

Rep. of Korea in 2004 and 2011, respectively.

He has been a senior researcher at Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Rep. of Korea, since 2004, and an

adjunct professor of the Mobile Communication and Digital

Broadcasting Engineering Department at the University of Science and

Technology (UST), Daejeon, Rep. of Korea, since 2011. His research

interests include image computing systems, pattern recognition, video

compression, and realistic broadcasting systems.

Soon-Heung Jung received his BS degree in

electronic engineering in 2001 from Pusan

National University, Busan, Rep. of Korea. He

received his MS degree in electronic

engineering in 2003 from Korea Advanced

Institute in Science and Technology (KAIST),

Daejeon, Rep. of Korea. From 2003 to 2005, he

was a research engineer at LG Electronics, Rep. of Korea. Since 2005,

he has been a senior member of the engineering staff at ETRI and he is

also working toward a PhD in electronic engineering at KAIST,

Daejeon, Rep. of Korea. His research interests are in the area of visual

communication, video signal processing, video coding, and realistic

broadcasting systems.

Jin Soo Choi received his BE, ME, and PhD in

electronic engineering from Kyungpook

National University, Daegu, Rep. of Korea, in

1990, 1992, and 1996, respectively. Since 1996,

he has been a principal member of the

engineering staff at ETRI, Daejeon, Rep. of

Korea. He has been involved in developing the

MPEG-4 codec system, data broadcasting systems, and UDTV. His

research interests include visual signal processing and interactive

services in the field of digital broadcasting technology.

