• Title/Summary/Keyword: rapid fermentation

Search Result 247, Processing Time 0.031 seconds

Generation of Demyelination through Use of M. leprae-specific phenolic glycolipid-1 (PGL-1)

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.48-49
    • /
    • 2015
  • For myelination, Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were cultured in vitro system. The purified DRG cells with anti-mitotic agents and purified Schwann cells were cocultured and then accomplished myelination processing. Treatment of M. leprae-specific phenolic glycolipid-1 (PGL-1) into this coculture system was performed and then accomplished demyelination. Therefore, we identified demyelination processing using antibody of myelin basic protein (MBP).

Fluorescent Compounds Having the Spaced and Integrated Type Receptors

  • Choi, Chang-Shik
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Fluorescent receptors have gained much attention because of their usefulness in analysis and clarification of the roles of biomolecules in living systems. Molecular structures of the integrated type including that the receptor itself is fluorescent, and play an important role in having the functionality or selectivity of the fluorescent compounds. These spaced type fluorescent receptors are required to have special molecular design in order to transmit the information of molecular recognition to the fluorescent unit through the spacer unit. Compared with the spaced type fluorescent receptors, number of the integrated type receptors is limited due to the difficult molecular design and synthesis. Modification of alteration of the fluorophore frequently caused deterioration of the fluorescent property. Various spaced type and integrated type fluorescent receptors including switch on-off receptors are introduced in this article.

Rapid Purification of Recombinant Human Lipocortin-I Secreted from Saccharomyces cerevisiae

  • Chung, Bong-Hyun;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.242-246
    • /
    • 2000
  • Human lipocortin-I was expressed as a secretory product by Saccharomyces cerevisiae harboring an expression system consisting of GAL10 promoter, inulinase signal sequence and lipocortin-I terminator. Fed-batch fermentation was carried out to overproduce recombinant human lipocortin-I. The culture medium was desalted and concentrated by ultrafiltration, and then subjected to hydroxyapatite column chromatography. The lipocortin-I was purified to >98% purity by single-step hydroxyapatite column chromato-graphy. However, it was found that the purified lipocortin-I was a proteolytically-cleaved form which was cleaved immediately after the basic amino acid Lys26.

  • PDF

Studies on the Storage Stability of Traditional Andong sikhe using Lactobacillus delbreuckii (Lactobacillus delbreuckii를 이용한 전통안동식혜의 저장 안정성)

  • Choi, Cheong;Son, Gyu-Mok;Woo, He-Sob
    • Journal of the Korean Society of Food Culture
    • /
    • v.7 no.4
    • /
    • pp.329-338
    • /
    • 1992
  • This study was attempted aimed to prepare of Andong sikhe by pure culture inoculation and to improve storage stability by the addition of stabilizers to the product. Lactobacillus delbreuckii was selected for pure culture inoculation in the fermentation. The effect of stabilizers on the sedimentation, sensory evaluation and viscosity of Sikhe were investigated during the fermentation of traditional Andong Sikhe stored at $4^{\circ}C$ Morphological characteristics of Sikhe were determined by scanning electromicrograpy. Among the stabilizers added to the traditional Andong sikhe Na-alginate was found to be best stabilizers. When the product was evaluated by the sensory panel, the addition of stabilizers up to 0.1% level actually increased the acceptability of the product, while the concentration of more than 0.2% stabilizers affected the acceptability of the negatively. Sikhe added Na-carboxymethyl cellulose and Na-alginate showed highest viscosity on the 2nd day of fermentation, while homogenized Andong sikhe with Carrageenan showed the highest peak in viscosity on the first day of fermentation. Lactic acid bacterial count reached to $3.2{\times}10^8/ml$ after 20 days of storage. The surface and cross section of rice was observed by scanning electron microscope. As the fermentation proceeded holes on the surface increased, and nearly empty cell wall remained at the later stage of fermentation. Use of pure cultured inoculum of L. delbreuckii supported the rapid build up of the lactic acid bacteria and consequently the whole process of the fermentation was shortened. The acceptability and product quality were improved by use of L. delbreuckii inoculum.

  • PDF

Change in the Microbial Profiles of Commercial Kimchi during Fermentation (국내 시판김치의 김치담금부터 숙성까지의 미생물 균총 변화)

  • Chang, Ji-Yoon;Choi, Yu-Ri;Chang, Hae-Choon
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.786-794
    • /
    • 2011
  • To investigate the sanitary-quality level of commercial kimchi in South Korea, the pH, acidity, and microbial-flora changes in the kimchi were determined. Samples of kimchi produced by three different manufacturers (a small grocery store, a small/medium-sized enterprise, and a large food company) were collected. Freshly made kimchi was purchased and fermented at $10^{\circ}C$ for 10 days. The pH of the commercial kimchi on the purchased day was approximately pH 5.8, and that on the $10^{th}$ day of fermentation was ${\simeq}pH$ 4.1. The kimchi purchased from a large company showed a more rapid decline in pH level during fermentation. The saltiness of the kimchi purchased from a medium-sized company was slightly higher than those of the other commercial kimchi samples. The saccharinity index of the kimchi produced by a small grocery store was higher than those of the other samples, and its value deviation was also higher than those of the other commercial kimchi samples. A higher total viable-cell count and a higher lactic-acid bacteria (LAB) count were detected in the kimchi from the large food company at the beginning of fermentation compared to the samples of the two other kimchi manufacturers. The highest cell numbers of gram-positive bacteria (except LAB) and coliform bacteria were detected from the small-grocery-store kimchi, but the coliform bacteria count gradually decreased during fermentation although such bacteria were still detected until the $10^{th}$ day of fermentation. In contrast, coliform bacteria were not detected in the samples from the medium-sized and large food companies. Yeast, which is detected in over-ripened kimchi, was detected in the unfermented kimchi from the small grocery store, which had a below-0.36% acidity level. The gram-positive bacteria (except LAB) that were detected in all the tested commercial kimchi samples were determined to be Bacillus spp., and the gram-negative bacteria were determined to be Escherichia coli, Enterobacter spp., Sphingomonase spp., and Strenophomonas spp. The proportions of all the aforementioned bacteria in the kimchi samples, however, were different depending on the samples that were taken. These results indicate that a more sanitary kimchi production process and a more systematic kimchi production manual should be developed to industrialize and globalize kimchi.

Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System

  • Zhao, Hongyan;Yu, Hairu;Yuan, Xufeng;Piao, Renzhe;Li, Hulin;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.585-591
    • /
    • 2014
  • To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of $3.3{\times}10^8$ copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

Effect of a Number of Organic Sources on the Ammonification and Nitrification of Urea and Soil Reaction (요소의 암모니아화 및 질산화와 토양반응에 미친 수종 유기물의 영향)

  • 오왕근;허지희;김재영
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.47-53
    • /
    • 1991
  • A laboratory experiment was conducted in order to learn the effect of a number of organic matters on the ammonification and nitrification of urea, and the reaction of soil, applied to a loamy upland soil poor in orgnic matter(<1.5%, without plants 1.The ammonification of urea was most pronounced in one week period immediatly after fertilizer and water treated, after which a rapid decrease of it was followed showing no accumulation at the end of 3rd week. Owing to the accumlation of ammonium, pHs of treated soils were read 7.0 to 7.3 from 6.8~6.9. 2.Nitrification was also progressed rapidly in the first one week period so that the accumulation of NO$_3$-N surpassed that of ammonia during this period. After the 1st week the accumulation of N0$_3$-N was continuously increased showing the maximum at the end of 4 weeks following a sharp decrease at the end of 5th weeks. The accumulation of NO$_3$-N dropped soil pH from 6.8-7.0 to 6. 0-6.2,but the decrease of NO-N at the end of 5th weeks brought up soil pH to 6.4-6.6. again. 3.Amino acid fermentation byproduct rich in salt, paticularly chloride, slowed down the ammonification and nitrification of urea. 4.The application of organic matter diminished the acidifying effect of chemical fertilizers. The diminishing effect of soluble humic acid and amion acid fermentation byproduct showed greater than that of solid organic matter in this experiment, which might be own to the application of a rather small amount of water soluble organic matters. Rice straw powder among solid organic matters appeared to be the least in the diminishing effect above. It may be reasoned that these soluble organic matters decomposes rapidly so as to affect Soil pH, but solid organic matters, particularly the rice straw powder, form acidic humus.

  • PDF

Physiochemical Characteristics of Rapidly Processed Salt-fermented Sandfish Arctoscopus japoncus Sauce with Thermophilic bacillus (Thermophilic bacillus로 제조한 속성 도루묵(Arctoscopus japoncus) 액젓의 이화학적 특성)

  • Nam, Ki Ho;Jang, Mi Soon;Park, Hee Yeon;Kwak, Won Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.674-680
    • /
    • 2015
  • This study was conducted to characterize the rapidly processed salt-fermented sandfish sauce added Bacillus coagurance KM-1 (RSSS) and commercial salt-fermented sandfish sauce (CSSS 1, 2). Contents of total nitrogen and amino nitrogen were higher in CSSS 1,2 than in RSSS (P<0.05). Total free amino acid contents of RSSS and CSSS 1,2 were 1,121.2±100 mg/100 g, 1,553.6±98.2 mg/100 g and 1,507.3±99.8 mg/100 g. Major free amino acid of RSSS was glutamic acid (194.4±17.3 mg/100 g), alanine (140.8±12.6 mg/100 g), lysine (135.1±12.1 mg/100 g), leucine (109.8±9.8 mg/100 g), aspartic acid (103.0±9.2 mg/100 g), valine (73.5±6.6 mg/100 g) in ordor. The samples were caused by their composition of the free amino acids rations, in which were umami, sweet and bitter taste in the salt-fermented sandfish sauce during fermentation. The Na was the largest mineral followed by K, Mg, P, Ca in the samples (P<0.05). Sensory evaluation result of samples, CSSS 1 was the highest than the others in overall acceptance.

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.