Browse > Article
http://dx.doi.org/10.4014/jmb.1310.10089

Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System  

Zhao, Hongyan (Yanbian University)
Yu, Hairu (Yanbian Academy of Agricultural Science)
Yuan, Xufeng (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University)
Piao, Renzhe (Yanbian University)
Li, Hulin (Yanbian University)
Wang, Xiaofen (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University)
Cui, Zongjun (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 585-591 More about this Journal
Abstract
To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of $3.3{\times}10^8$ copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.
Keywords
Microbial community; rice straw degradation; qPCR; volatile fatty acids;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Zhao Y, Li W, Zhou Z, Wang L, Pan Y, Zhao L. 2005. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. Eur. J. Soil Biol. 41: 21-29.   DOI   ScienceOn
2 Zhu H, Qu F, Zhu L-H. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279.   DOI   ScienceOn
3 Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, et al. 2002. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int. J. Syst. Evol. Microbiol. 52: 2251-2255.   DOI   ScienceOn
4 Tachaapaikoon C, Lee YS, Rantanakhanokchai K, Pinitglang S, Khin LK, Rho MS, and Lee S-K. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618.
5 Ueno Y, Haruta S, Ishii M, Igarashi Y. 2001. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J. Biosci. Bioeng. 92: 397-400.   DOI   ScienceOn
6 Wang A, Li Y-Y, Estrada AL. 2011. Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Appl. Catal. B Environ. 102: 378-386.   DOI   ScienceOn
7 Wang W, Cui Z, Wang X, Niu J, Liu J, Igarashi Y. 2005. Capability and stability of degrading rice straw of composite microbial system MC1. Environ. Sci. 26: 156.
8 Wang X, Haruta S, Wang P, Ishii M, Igarashi Y, Cui Z. 2006. Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol. Ecol. 57: 106-115.   DOI   ScienceOn
9 Whitman W, Bowen T, Boone D. 2006. The methanogenic bacteria, pp. 165-207. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.). The Prokaryotes, 3rd Ed. Springer-Verlag, New York.
10 Yang H, Wu H, Wang X, Cui Z, Li Y. 2011. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresour. Technol. 102: 3546-3550.   DOI   ScienceOn
11 Yuan XF, Wang H, Cheng X. 2011. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J. Microbiol. Biotechnol. 21: 746-752.   DOI   ScienceOn
12 Zhao H-Y, Li J, Liu J-J, Lü Y-C, Wang X-F, Cui Z-J. 2013. Microbial community dynamics during biogas slurry and cow manure compost. J. Integr. Agric. 12: 1087-1097.   DOI
13 Nazina T, Tourova T, Poltaraus A, Novikova E, Grigoryan A, Ivanova A, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446.
14 Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progr. Energy Combust. Sci. 38: 522-550.   DOI   ScienceOn
15 Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
16 Na W, Liu P, Zhang Y-F, Jiang F-M, Ge M-H. 2010. Analysis and evaluation of utilizable resources of main crop straw in Jilin Province. J. Jilin Agric. Univ. 32: 413-418.
17 Peng G, Zhu W, Wang H, Lue Y, Wang X, Zheng D, Cui Z. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264.
18 Salvador Pedro M, Haruta S, Hazaka M, Shimada R, Yoshida C, Hiura K, et al. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter. J. Biosci. Bioeng. 91: 159-165.   DOI   ScienceOn
19 Singh J, Batra N, Sobti R. 2001. A highly thermostable, alkaline CMCase produced by a newly isolated Bacillus sp. VG1. World J. Microbiol. Biotechnol. 17: 761-765.   DOI   ScienceOn
20 Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534.   DOI   ScienceOn
21 Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405.   DOI   ScienceOn
22 Lü Y, Li N, Gong D, Wang X, Cui Z. 2012. The effect of temperature on the structure and function of a cellulosedegrading microbial community. Appl. Biochem. Biotechnol. 168: 219-233.   DOI   ScienceOn
23 Johnvesly B, Virupakshi S, Patil G, Naik G. 2002. Cellulasefree thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB-99. J. Microbiol. Biotechnol. 12: 153-156.
24 Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51: 133-142.   DOI   ScienceOn
25 Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2005. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71: 7099-7106.   DOI   ScienceOn
26 Li PP, Wang XJ, Cui ZJ. 2012. Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil. J. Microbiol. Biotechnol. 22: 126-132.   DOI   ScienceOn
27 Liu C-L, Wang X-F, Wang X-J, Li P-P, Cui Z-J. 2010. The character of normal temperature straw-rotting microbial community. Agric. Sci. China 9: 713-720.   DOI   ScienceOn
28 Liu J-B, Wang W-D, Yang H-Y, Wang X-F, Gao L-J, Cui Z-J. 2006. Process of rice straw degradation and dynamic trend of pH by the microbial community MC1. J. Environ. Sci. 18: 1142-1146.   DOI   ScienceOn
29 Castillo M, Martin-Orue SM, Manzanilla EG, Badiola I, Martin M, Gasa J. 2006. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet. Microbiol. 114: 165-170.   DOI   ScienceOn
30 Centeno MS, Goyal A, Prates JA, Ferreira L, Gilbert HJ, Fontes CM. 2006. Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus. FEMS Microbiol. Lett. 265: 26-34.   DOI   ScienceOn
31 Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270.   DOI   ScienceOn
32 Fang GR, Li JJ, Cheng X, Cui ZJ. 2012. Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J. Microbiol. Biotechnol. 22: 1148-1154.   DOI   ScienceOn
33 Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E. 2001. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int. J. Syst. Evol. Microbiol. 51: 2063-2071.   DOI   ScienceOn
34 Guo P, Wang X, Zhu W, Yang H, Cheng X, Cui Z. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109-114.   DOI   ScienceOn