DOI QR코드

DOI QR Code

Fluorescent Compounds Having the Spaced and Integrated Type Receptors

  • Received : 2016.06.13
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

Fluorescent receptors have gained much attention because of their usefulness in analysis and clarification of the roles of biomolecules in living systems. Molecular structures of the integrated type including that the receptor itself is fluorescent, and play an important role in having the functionality or selectivity of the fluorescent compounds. These spaced type fluorescent receptors are required to have special molecular design in order to transmit the information of molecular recognition to the fluorescent unit through the spacer unit. Compared with the spaced type fluorescent receptors, number of the integrated type receptors is limited due to the difficult molecular design and synthesis. Modification of alteration of the fluorophore frequently caused deterioration of the fluorescent property. Various spaced type and integrated type fluorescent receptors including switch on-off receptors are introduced in this article.

Keywords

References

  1. G. Q. Stokes, Phil, Trans. 1852, 142, 463. https://doi.org/10.1098/rstl.1852.0022
  2. G. Q. Stokes, Phil, Trans. 1853, 143, 385. https://doi.org/10.1098/rstl.1853.0016
  3. T. Nishikawa, K. Hiraki, Keikou Rinkou Bunseki-hou, Kyouritsu, Tokyo, (1984).
  4. P. L. Smart and I. M. S. Laidlaw, Water Resour. Res., 1977, 13, 15. https://doi.org/10.1029/WR013i001p00015
  5. J. F. Wilson Jr., E. D. Cobb and F. A. Kilpatrick, in Fluorometric Procedures for Dye Tracing, Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Applications of Hydraulics, TWI 3-A12, U. S. Government Printing Office, Washington D.C, (1986).
  6. J. R. Herring, in M. C. Kavanaugh and J. O. Leckie eds., Particulates in Water, Advances in Chemistry 189, ACS, (1981).
  7. K. Newman, F. M. M. Morel and K. D. Stolzenbach, Environ. Sci. Technol., 1990, 24, 506. https://doi.org/10.1021/es00074a007
  8. K. A. Newman, S. L. Frankel and K. D. Stolzenbach, Environ. Sci. Technol., 1990, 24, 513. https://doi.org/10.1021/es00074a008
  9. R. F. Christman and R. A. Minear in S. D. Faust and J. V. Hunter eds., Organic Compounds in Aquatic Environments, M. Dekker, NY, p.119, (1971).
  10. A. Vogel, Textbook of Quantitative Inorganic Analysis, Longman, (1978).
  11. K. Morishige, Anal. Chim. Acta, 1974, 72, 295. https://doi.org/10.1016/S0003-2670(01)95859-3
  12. E. A. Permyakov, V. V. Yarmolenko, L. P. Kalinichenko and E. A. Burstein, Bioorg. Khim., 1981, 7, 1660.
  13. A. Rehaeg and F. X. Schmidt, Biochemistry, 1982, 21, 1499. https://doi.org/10.1021/bi00536a006
  14. W. C. Galley, in R. F. Chen and H. Edelhoch, eds., Biochemical Fluorescence: Concepts, vol. II, Marcel Dekker, NY, (1976).
  15. A. S. Waggoner and L. Stryer, Proc. Natl. Acad. Sci. U. S., 1970, 67, 579. https://doi.org/10.1073/pnas.67.2.579
  16. K. R. Thulborn, L.M. Tilley, W. A. Sawyer and F. E. Treloar, Biochim. Biophys. Acta, 1979, 558, 166. https://doi.org/10.1016/0005-2736(79)90057-9
  17. L. Tilley, K. R. Thulborn and W. H. Sawer, J. Biol. Chem., 1979, 254, 2592.
  18. J. Teissie, Biochim. Biophys. Acta, 1979, 555, 553. https://doi.org/10.1016/0005-2736(79)90409-7
  19. S. S. Gupte, L. K. Lane, J. D. Johnson, E. T. Wallick and A. Schwartz, J. Bio. Chem., 1979, 254, 5099.
  20. J. Mungnier, J. Pouget, J. Bourson and B. Valeur, J. Lumin., 1985, 33, 273. https://doi.org/10.1016/0022-2313(85)90004-3
  21. J. Mungnier, B. Valeur and E. Gratton, Chem. Phys. Lett., 1985, 119, 217. https://doi.org/10.1016/0009-2614(85)80063-4
  22. J. R. Lakowicz, M. L. Johnson, W. Wiczk, A. Bhat and R. F. Steiner, Chem. Phys. Lett., 1987, 138, 587. https://doi.org/10.1016/0009-2614(87)80130-6
  23. W. M. Wiczk, I. Gryczynski, H. Szmacinski, M. L. Johnson, M. Kruszynski and J. Zboinska, Biophys. Chem., 1988, 32, 43. https://doi.org/10.1016/0301-4622(88)85032-4
  24. M. Kaschke, N. P. Ernsting, B. Valeur and J. Bourson, J. Phys. Chem., 1990, 94, 5757. https://doi.org/10.1021/j100378a029
  25. I. Clark and G. Howe, Anal. Biochem., 1967, 19, 14. https://doi.org/10.1016/0003-2697(67)90128-5
  26. B. L. Kepner and D. M. Hercules, Anal. Chem., 1963, 35, 1238. https://doi.org/10.1021/ac60202a007
  27. J. Rogers, T. R. Kesketh, G. A. Smith, M. A. Beaven, J. C. Metcalfe, P. Johnson and P. B. Garland, FEBS Lett., 1983, 161, 21. https://doi.org/10.1016/0014-5793(83)80722-4
  28. P. Fernandez, C. Perez-Conde, A. M. Gutierrez and C. I. Camara, J. Mol. Struct., 1986, 143, 549. https://doi.org/10.1016/0022-2860(86)85322-4
  29. O. G. Perterson, S. A. Tuccio and B. B. Snavely, Appl. Phys. Lett., 1970, 17, 245. https://doi.org/10.1063/1.1653384
  30. P. P. Sorokin and J. R. Lankard, IBM J. Res. Develop., 1966, 10, 162. https://doi.org/10.1147/rd.102.0162
  31. F. P. Schafer, W. Schmidt and J. Volze, Appl. Phys. Lett., 1966, 9, 306. https://doi.org/10.1063/1.1754762
  32. A. N. Fletcher, R. A. Henry, M. E. Pietrak, D. E. Bliss and J. G. Hall, Appl. Phys. B., 1987, 43, 155. https://doi.org/10.1007/BF00695616
  33. J. M. Kauffman and J. H. Bentley, Laser Chem., 1988, 8, 49. https://doi.org/10.1155/LC.8.49
  34. T. G. Pavlopoulos, J. H. Boyer, I. R. Politzer and C. M. Lau, J. Appl. Phys., 1986, 60, 4028. https://doi.org/10.1063/1.337529
  35. 010L. Goldman, in Dye Laser Principles with Applications, F. J. Duarte and L. W. Hillman ed., Academic Press, San Diego, CA, p. 419, (1990).
  36. R. A. Hann, Mol. Cryst. Liq. Cryst., 1993, 236, 65 https://doi.org/10.1080/10587259308055211
  37. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51. 913. https://doi.org/10.1063/1.98799
  38. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mckay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539. https://doi.org/10.1038/347539a0
  39. D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982. https://doi.org/10.1063/1.105039
  40. D. Braun, A. J. Heeger and H. Kroemer, J. Electronic Materials, 1991, 20, 945. https://doi.org/10.1007/BF02816037
  41. G. Grem, G. Leditzky, B. Ulrich and G. Leising, Adv. Mat., 1992, 4, 36. https://doi.org/10.1002/adma.19920040107
  42. A. W. Czarnik ed., Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Books, Wasington D.C., (1993).
  43. A. W. Czarnik, ACS Symp. Ser., 1994, 561, 314;
  44. A. Ueno, ACS Symp. Ser., 1994, 538, 74.
  45. R. A. Bissell, A. P. Desilva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, Chem. Soc. Rev., 1992, 21, 187. https://doi.org/10.1039/CS9922100187
  46. M. Takeshita and S. Shinkai, Bull. Chem. Soc. Jpn., 1995, 68, 1088. https://doi.org/10.1246/bcsj.68.1088
  47. M. Eddaouli, H. Parrotlopez, S. P. Delamotte, D. Ficheux, P. Prognon and A. W. Coleman, J. Chem. Soc., Perkin Trans. 2, 1996, 1711.
  48. J. Wang, A. Nakamura, K. Hamasaki, H. Ikeda, T. Ikeda and A. Ueno, Chem. Lett., 1996, 303.
  49. Y.-B. Jiang and X.-J. Wang, J. Photochem. Photobiol. A: Chem., 1994, 81, 205. https://doi.org/10.1016/1010-6030(94)03786-8
  50. G. X. He, F. Wada, K. Kikukawa, S. Shinkai and T. Matsuda, J. Chem. Soc., Chem. Commun., 1987, 1294.
  51. G. X. He, F. Wada, K. Kikukawa, S. Shinkai and T. Matsuda, J. Org. Chem., 1990, 55, 548. https://doi.org/10.1021/jo00289a029
  52. R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, Chem. Soc. Rev., 1992, 21, 187. https://doi.org/10.1039/CS9922100187
  53. T. Mutai, Y. Abe and K. Araki, J. Chem. Soc., Perkin Trans. 2, 1997, 1805.
  54. T. J. Murray and S. C. Zimmerman, J. Am. Chem. Soc., 1992, 114, 4010. https://doi.org/10.1021/ja00036a079
  55. S. K. Chang, D. Van Engen, E. Fan and A. D. Hamilton, J. Am. Chem. Soc., 1991, 113, 7640. https://doi.org/10.1021/ja00020a027
  56. J. S. Nowick and J. S. Chen, J. Am. Chem. Soc., 1992, 114, 1107. https://doi.org/10.1021/ja00029a060
  57. J. S. Nowick, J. S. Chen and G. Noronha, J. Am. Chem. Soc., 1993, 115, 7636. https://doi.org/10.1021/ja00070a007
  58. J. S. Nowick, T. Cao and G. Noronha, J. Am. Chem. Soc., 1994, 116, 3285. https://doi.org/10.1021/ja00087a014
  59. K. Motesharei and D. C. Myles, J. Am. Chem. Soc., 1994, 116, 7413. https://doi.org/10.1021/ja00095a057
  60. H. Murakami and S. Shinkai, J. Chem. Soc., Chem. Commun., 1993, 1533.
  61. N. Tamura, K. Mitsui, T. Nobeshima and Y. Yano, J. Chem. Soc., Perkin Trans. 2, 1994, 2229
  62. J. Herbich, J. Waluk, R. P. Thummel and C. Y. Hung, J. Photochem. Photobiol. A: Chem., 1994, 80, 157. https://doi.org/10.1016/1010-6030(94)01050-1
  63. R. P. Thummel, C. Y. Hung, T. Hopfner and J. Russel, J. Chem. Soc., Chem. Commun., 1994, 857.
  64. M. D. P. de Costa, A. P. de Silva and S. T. Pathirana, Can. J. Chem., 1987, 65, 1416. https://doi.org/10.1139/v87-239
  65. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85. https://doi.org/10.1016/0010-8545(88)80032-8
  66. O. Horvath, K. L. Stevenson, Charge Transfer Photochemistry of Coordination Compounds, VCH, New York, (1993).
  67. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem. Rev., 1996, 96, 759. https://doi.org/10.1021/cr941154y
  68. K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes, Academic, London, (1992).
  69. D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum, New York, (1994).
  70. D. B. MacQueen and K. S. Schanze, J. Am. Chem. Soc., 1991, 113, 6108. https://doi.org/10.1021/ja00016a028
  71. D. I. Yoon, C. A. BergBrennan, H. Lu and J. J. Hupp, Inorg. Chem., 1992, 31, 3192. https://doi.org/10.1021/ic00041a005
  72. P. D. Beer, O. Kocian, R. J. Mortimer and C. Ridgway, J. Chem. Soc., Chem. Commun., 1991, 1460.
  73. P. D. Beer, S. W. Dent and T. J. Wear, J. Chem. Soc., Dalton Trans., 1996, 2341.
  74. P. D. Beer, A. R. Graydon and L. R. Sutton, Polyhedron, 1996, 15, 2457. https://doi.org/10.1016/0277-5387(96)00015-0
  75. F. Szemes, D. Hesek, Z. Chen, S. W. Dent, M. G. B. Drew, A. J. Goulden, A. R. Graydon, R. Grieve, R. J. Mortimer, T. Wear, J. S. Weightman and P. D. Beer, Inorg. Chem., 1996, 35, 5868. https://doi.org/10.1021/ic960318l
  76. Photoinduced electron transfer, Parts A-D, M. A. Fox and M. Chanon, Eds., Elsevier, Amsterdam, (1988).
  77. Photoinduced electron transfer, Parts I-V, J. Mattay, Ed., Top. Curr. Chem., 1990, 156, 158; 1991, 159; 1992, 163; 1993, 168.
  78. Electron transfer. Part I, J. Mattay, Ed., Top. Curr. Chem., 1990, 169.
  79. M. R. Wasielewski, Chem. Rev., 1992, 92, 435. https://doi.org/10.1021/cr00011a005
  80. G. J. Kavarnos, Fundamentals of photoinduced electron transfer, VCH, Weinheim, New York, (1993).
  81. G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401. https://doi.org/10.1021/cr00072a005
  82. A. P. de Silva, H. Q. N. Gunaratne and K. R. A. S. Sandanayake, Tetrahedron Lett., 1990, 31, 5193. https://doi.org/10.1016/S0040-4039(00)97840-7
  83. M. Inouye, J. Hashimoto and K. Isagawa, J. Am. Chem. Soc., 1994, 116, 5517. https://doi.org/10.1021/ja00091a085
  84. D. A. Dougherty, Science, 1996, 271, 63.
  85. T. Arimura, C. T. Brown, S. L. Springs and J. L. Sessler, Chem. Commun., 1996, 2293.
  86. C. A. Hunter and R. J. Shannon, Chem. Commun., 1996, 1361.
  87. M. Gubelmann, J.-M. Lehn, J. L. Sessler and A. J. Harriman, J. Chem. Soc., Chem. Commun., 1988, 77.
  88. V. J. Krishnan, J. Photochem. Photobiol. A: Chem., 1994, 84, 233. https://doi.org/10.1016/1010-6030(94)03865-1
  89. S. P. McGlynn, T. Azumi and M. Kinoshita, Molecular spectroscopy of the triplet state, Prentice Hall, Englewood Cliffs, NJ, (1969).
  90. T. Mutai and K. Araki, SEISAN-KENKYU, 1998, 50(3), 125.
  91. C.-T. Chen, H. Wagner and W. C. Still, Science, 1998, 279, 851. https://doi.org/10.1126/science.279.5352.851
  92. Md. A. Hossain and H.-J. Schneider, J. Am. Chem. Soc., 1998, 120, 11208. https://doi.org/10.1021/ja982435g
  93. A. Torrado, G. K. Walkup and B. Imperiali, J. Am. Chem. Soc., 1998, 120, 609. https://doi.org/10.1021/ja973357k
  94. C. Harford and B. Sarkar, Acc. Chem. Res., 1997, 30, 123. https://doi.org/10.1021/ar9501535
  95. K. A. Koch, M. M. O. Pena and D. J. Thiele, Chem. Biol., 1997, 4, 549. https://doi.org/10.1016/S1074-5521(97)90241-6
  96. J. Masuoka, J. Hegenauer, B. R. Van Dyke and P. Saltman, J. Biol. Chem., 1993, 268, 21533.
  97. K. R. A. S. Sandanayake, K. Nakashima and S. Shinkai, J. Chem. Soc., Chem. Commun., 1994, 1621.
  98. S. Delmond, J. F. Letard, R. Lapouyade, R. Mathevet, G. Jonusauskas and C. Rulliere, New J. Chem., 1996, 20, 861.
  99. M. V. Alfimov, S. P. Gromov and I. K. Lednev, Chem. Phys. Lett., 1991, 185, 455. https://doi.org/10.1016/0009-2614(91)80242-P
  100. J. Otsuki, T. Yamagata and K. Araki, unpublished result.
  101. K. Araki, K. Tada, M. Abe and T. Mutai, J. Chem. Soc., Perkin Trans. 2, 1998, 1391.
  102. Choi, C.-S.; Jeon, K.-S.; K.-H. Lee, Bull. Korean Chem. Soc., 2011, 32, 3773. https://doi.org/10.5012/bkcs.2011.32.10.3773
  103. Saleem M.; Ali A.; Choi, C.-S.; Park, B.J.; Choi, E.H.; K.-H. Lee, J. Fluoresc., 2014, 24, 995. https://doi.org/10.1007/s10895-014-1408-x
  104. Choi, C.-S.; Kim, M.-K; Jeon, K.-S.; K.-H. Lee, J. Lumi., 2004, 109, 121. https://doi.org/10.1016/j.jlumin.2004.01.091
  105. Choi, C.-S.; Jeon, K.-S.; K.-H. Lee, J. Photosci., 2004, 11(2), 71