• Title/Summary/Keyword: rapeseed

Search Result 338, Processing Time 0.033 seconds

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

Gelation of Rapeseed Protein Induced with Microbial Transglutaminase (미생물성 Transglutaminase에 의한 유채단백질의 겔화)

  • Hyun, Eun-Hee;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1262-1267
    • /
    • 1999
  • Optimum reaction conditions for gel formation of rapeseed, Brassica napus, protein catalyzed by microbial TGase(transglutaminase) were evaluated by measuring breaking strength and deformation of gel. The polymerization of the protein gel was ascertained by SDS-PAGE and content of GL crosslinking$[{\varepsilon}-({\gamma}-glutamyl)lysine]$. In the reaction between rapeseed protein and TGase at $45^{\circ}C$ for 60 min, the breaking strength and deformation of the gel was the maximum at the ratio of 1 : 40 of enzyme to substrate. 10%(w/v) of rapeseed protein concentrate was optimum for gel production. The maximum breaking strength and deformation was shown at $45^{\circ}C$ The breaking strength increased linearly up to 90 min of the reaction time and remained unchanged. The breaking strength and deformation by TGase treatment was pH dependent and pH 7 was optimum for 10% rapeseed protein solution. SDS-PAGE analysis indicated that new band of highmolecular polymers were formed by the enzyme reaction, with disappearing the original bands of rapeseed protein. According to HPLC analysis. the content of GL crosslinking was increased from 0 to $7.14\;{\mu}mol/g$ gel for 90 min of the reaction time.

  • PDF

Effects of Roasting Condition and Storage Time on Changes in Volatile Compounds in Rapeseed Oils (제조 조건과 저장기간에 의한 유채유의 휘발성 화합물의 변화)

  • Lim, Chae-Lan;Hong, Eun-Jeung;Son, Hee-Jin;Kim, Jee-Eun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.291-302
    • /
    • 2011
  • The effects of roasting condition and storage time on rancidity of rapeseed oil were studied. Rapeseed oil from rapeseed roasted under different conditions were stored in the dark at $17^{\circ}C$. Volatile compounds of rapeseed oil were analyzed with an electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS). The data from the E-nose were analyzed using discriminant function analysis (DFA). As roasting temperature increased from 150 to $240^{\circ}C$ over 20 min, the first discriminant function score (DF1) moved from positive to negative. DF1 decreased with storage time and changes in DF1 were higher between 0 and 2 days and between 20 and 24 days. Twenty-four compounds were identified in rapeseed oil, and hydrocarbons, furans, ketones, acids, benzene, and aldehydes were detected by GC-MS. The number of formed volatile compounds increased as storage time increased, but no increase in these compounds was detected by GC-MS.

Single-dose Oral Toxicity Study of β-glucosidase 1 (AtBG1) Protein Introduced into Genetically Modified Rapeseed (Brassica napus L.) (GM 유채에 도입된 β-glucosidase 1 (AtBG1)의 단회투여독성시험)

  • Lee, Soonbong;Jeong, Kwangju;Jang, Kyung-Min;Kim, Sung-Gun;Park, Jung-Ho;Kim, Shinje
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Rapeseed (Brassica napus L.) is an oil crop classified as Brassicaceae, and it is widely grown worldwide. To develop a drought-resistant rapeseed, the ${\beta}$-glucosidase 1 (AtBG1) gene was introduced into rapeseed because drought- and salt-resistance phenotypes were observed when the AtBG1 gene was overexpressed in arabidopsis. Newly developed genetically modified crop must be proved to be safe. Safety assessments are based on the historical usage and scientific reports of a crop. In this study, we examined the potential acute oral toxicity of AtBG1 protein expressed in genetically modified (GM) rapeseed and calculated the minimum lethal dose at 6 weeks in both male and female ICR mice. AtBG1 protein was fed at a dose of 2,000 mg/kg body weight in five male and five female mice according to the marginal capacity concentration of OECD, 2,000 mg/15 ml/kg. Mortalities, clinical findings, and body weight changes were monitored for 14 days after dosing, and postmortem necropsy was performed on day 14. This study showed that no deaths occurred in the test group, and AtBG1 protein did not result in variations in common symptoms, body weight, and postmortem findings between the two groups. This showed that the minimum lethal dose of AtBG1 protein expressed in transgenic rapeseed exceed 2,000 mg/kg body weight in both sexes.

Study on Growth and Flowering Characteristics in the Spring Sowing for Selection of Rapeseed (Brassica napus L.) Varieties (봄 파종에 적합한 유채(Brassica napus L.) 품종 선발을 위한 생육 및 개화특성에 관한 연구)

  • Kim, Kwang-Soo;Ha, Su-Ok;Lee, Yong-Hwa;Jang, Young-Seok;Choi, In-Hu
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • The objective of this study was to determine the response of rapeseed (Brassica napus) to different planting date in the spring and varieties on growth and flowering characteristics. Eight rapeseed varieties were sowed at 10 day interval from 1st to 31th of March at Muan and Jeju in Korea. Significant planting dates and rapeseed varieties effects for growth, start of flowering and duration. As the planting date was being delayed, plant length and flower number were decreased, but branch number was increased. And, start of flowering date was retarded and flowering duration decreased with later planting date. Days from planting to flowering was shortened as seeding date was delayed and shortening degree was similar between experimental locations, Muan and Jeju. The days to flowering for rapeseed about 73~94 days for 1st March and then decreased to 57~71 days for the 31th March of planting date. 'Tammiyuchae' and 'Mokpo 111' seeded on each planting date come into blossom more earlier about 10 days as compared to 'Tamlayuchae' and 'Naehanyuchae'. The duration of flowering for the B. napus varieties was shortened as planting date was delayed. The results revealed that flowering characteristics of rapeseed can be greatly enhanced by planting as early as possible, and early flowering varieties i.e. 'Tammiyuchae' and 'Spring' were the most suitable varieties among the tested varieties for planting in the spring.

Physical Properties of Rapeseed (I) (유채 종자의 물리적 특성(I))

  • Duc, L.A.;Han, J.W.;Hong, S.J.;Choi, H.S.;Kim, Y.H.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.101-105
    • /
    • 2008
  • Some physical properties of rapeseed such as geometric properties (linear dimensions, sphericity, seed volume, surface area) and gravimetric properties (the mass of one thousand seeds, bulk density) were analyzed at five levels of moisture content of 10.03, 14.91, 20.07, 25.06 and 30.12% (w.b.). The physical properties of rapeseed were evaluated as a function of seed moisture content. In the moisture range, when the moisture content increase, sphericity decreased from 0.946 to 0.927, and geometric mean diameter, seed volume and surface area increased from 2.17 to 2.31 mm, 5.58 to $6.88 \;mm^3$ and 14.76 to $16.77\;mm^2$ respectively. Mass of one thousand seeds increased from 5.04 to 6.46 g. Bulk density decreased from 579.3 to $549.2\;kg/m^3$ due to swelling of the seed.

The Effects of Drying Conditions on the Germination Properties of Rapeseed (유채종자의 건조조건에 따른 발아특성)

  • Duc, Le Anh;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • This study was performed to determine the effect of drying conditions on the germination properties of rapeseed after seeds were dried under different drying conditions: $40^{\circ}C$, $50^{\circ}C$, or $60^{\circ}C$ in combination with 30%, 45%, or 60% relative humidity. As analytic results, drying conditions had significant effects (P-value < 0.001) and drying temperature was considered as the main factor on the germination properties of rapeseed. When drying temperature increased or relative humidity decreased, the vigor rate and germination rate decreased, the median germination time increased. The maximum values of vigor rate and germination rate were 90% and 95.44%, and their minimum values were 60.17 and 75%, respectively. To ensure the standard germination rate of 85%. The appropriate drying zone was determined and the drying temperature should be less than $51.0^{\circ}C$, $54.5^{\circ}C$ and $58.7^{\circ}C$ at 30%, 45% and 60% RH, respectively. The values for median germination time varied from 2 to 4 days. The predicted models of germination rate, vigor rate, and median germination time were determined.

Estimation of Effective Moisture Diffusivity of Rapeseed (Brassica napus L.) (유채 종자의 수본확산계수에 관한 연구)

  • Duc, Le Ahn;Hong, Sang-Jin;Han, Jae-Woong;Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.296-302
    • /
    • 2008
  • The effective moisture diffusivity and its dependence on drying temperature during drying of rapeseed were experimentally investigated. The data were recorded from thin layer drying experiments at nine different combinations of drying air temperatures of 40, 50, and $60^{\circ}C$ and the relative humidities of 30, 45, and 60%. The moisture diffusion equation was analyzed using stepwise multiple regression analysis. Effective moisture diffusivities were calculated based on the moisture diffusion equation for a spherical shape using Fick's second law. The effective diffusivities during the drying of rapeseed were $l.72{\times}10^{-11}$, $2.41{\times}10^{-11}$ and $3.31{\times}10^{-11}\;m^2{\cdot}s^{-1}$ at 40, 50 and $60^{\circ}C$, respectively. The activation energy for moisture diffusion during drying was $28.47\;kJ{\cdot}mol^{-1}$. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. Drying occurred in the falling rate period and the internal moisture diffusion phenomenon is the governing physical mechanism of the moisture movement in the particles.

Detection of Adulteration of Sesame Oil (II). Chromatographic Determination of Rapeseed Oil in Sesame Oil (참기름의 진위판정에 관하여(II) 참기름중의 채종유의 검출)

  • 천석조;임영희;송인상;노정배
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.3
    • /
    • pp.105-109
    • /
    • 1988
  • To develop a method for detecting and e&timating the quantity of adulterant rapeseed oil in sesame oil, five kinds of sesame oils and three kinds of rapeseed oils collected from different sources were fractionated by TLC (thin layer chromatography) and separated on the basis of PN (partition number) by HPLC (high performance liquid chromatography). These obsenations indicate that the proportion of adulterant rapeseed oil when mixed minimum 4% with sesame oil can be detected.

  • PDF

Effect of Feeding High Glucosinolate Rapeseed Meal to Laying Japanese Quail

  • Elangovan, A.V.;Verma, S.V.S.;Sastry, V.R.B.;Singh, S.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1304-1307
    • /
    • 2001
  • The laying performance of Japanese quails fed graded levels of high glucosinolate ($92.5{\mu}mole/g$) rapeseed meal (RSM) was assessed. One hundred and twenty Japanese quails aged 1 day-old were assigned at random to four dietary treatments consisting of 0, 50, 75 or 100 g/kg RSM in the diet replacing part of the soybean meal and de-oiled rice bran in a standard quail ration. 12 female representative quails from each diet were selected at random and housed in individual cages from 7-20 wk of age. The egg production, feed intake and FCR was comparable among the different dietary groups. The egg quality characteristics, organoleptic evaluation of boiled eggs as well as the haematological (haemoglobin, total erythrocyte count, total leucocyte count) and biochemical (glucose, protein, cholesterol, aspartate amino transferase, alanine amino transferase and alkaline phosphatase) constituents did not differ significantly among the groups. The gross and histopathological studies of vital organs did not reveal any appreciable changes. The feed cost was reduced by the incorporation of RSM in the diet, but only the production cost of quails fed the 75 g/kg RSM was lower in comparison to other groups. In the present study, the laying potential of Japanese quail was well-maintained up to the 100g/kg dietary level of rapeseed meal.