• Title/Summary/Keyword: range of motion

Search Result 3,040, Processing Time 0.034 seconds

A Study of Measurement Methods for Subtalar Joint Motion (목말밑관절 가동범위 측정방법에 관한 연구)

  • Kim, Gi-Won;Hong, Wan-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.4
    • /
    • pp.57-64
    • /
    • 2010
  • Purpose: This study aimed to determine whether there are differences in subtalar joint range of motion (ROM) when using different measurement methods, and to determine inter- and intra-rater reliability of goniometry as used in clinical setting. Methods: Subjects were thirty-one healthy males and females (sixty-two ankles) living in Korea. Three raters with different clinical experiences measured inversion and eversion range of motion of the subtalar joint two times. Measurements were done with subjects prone (open kinetic chain) and standing (closed kinetic chain). Rater and measurement methods were based on analyzing differences in range of motion. Intra-class correlation coefficients (ICCs) were calculated to determine intra-rater and inter-rater reliability. Results: Mean subtalar jont range of motion for inversion ranged from $9.31^{\circ}$ to $11.94^{\circ}$ for eversion, it ranged from $6.73^{\circ}$ to $9.20^{\circ}$. The differences in ROM between raters and between measurement methods were significant (p<0.01). The ICCs for interrater reliability ranged from $0.02^{\circ}$ to $0.20^{\circ}$ for inversion and from $0.23^{\circ}$ to $0.39^{\circ}$ for eversion. Intrarater reliability ranged from $0.32^{\circ}$ to $0.78^{\circ}$ for inversion and from $0.45^{\circ}$ to $0.73^{\circ}$ for eversion. Conclusion: Subtalar joint inversion and eversion ROM show differences for measurement methods low reliability between different raters, and low to high intra-rater reliability within sessions.

Active Tactual Motion of Fingertips in FUUAI Evaluation Of Textile Fabrics

  • Lee, Su-Min;Kamijo, Masayoshi;Nishimatsu, Toyonori;Shimizu, Yoshio
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.190-194
    • /
    • 2002
  • Human uses sight, tactile sense to evaluate Total Hand Value(FUUAI) of textile fabrics. Tactile sense is important factor which decided the Total Hand Value of a textile fabric. When human feels the FUUAI, physical and physiological phenomena are occurred in finger. We first found out physical variable that is happened in fingertip when human is feeling the FUUAI. Such physical variable means characteristic of action tactual motion of finger such as moving range, tactile time, moved distance, speed of finger and applied force by finger. We study the relationship between action tactual motion and the ability in which the human distinguishes the textile fabric. As a result, we could know the characteristics of the tactual motion of fingertip to get high distinguishable ability. The characteristics were different in men and women respectively. In the case of man, touched time and moving range influenced to distinguish, and moving range, and the moving speed of finger influenced, in woman's case.

  • PDF

Motion Compensation Based on Signal Processing Method for Airborne SAR

  • Song, Won-Gyu;Shin, Hee-Sub;Lee, Ho-Jin;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1199-1201
    • /
    • 2005
  • In the synthetic aperture radar (SAR) system, the motion error is the main phase error sources and the motion compensation is very important. The phase gradient autofocus (PGA) is a state of art technique for phase error correction of SAR. It exploits the redundancy of the phase-error information among range bins by selecting the strongest scatter for each range bin and synthesizes them. The motivation of this paper is based on the observation that the redundancy of phase error is also among the cross-range direction. Moreover, the proposed method applies the weighting function to better utilize the phase error information. The validity of the proposed scheme for PGA is tested with some numerical simulation.

  • PDF

Range and Velocity Estimation of the Object using a Moving Camera (움직이는 카메라를 이용한 목표물의 거리 및 속도 추정)

  • Byun, Sang-Hoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1737-1743
    • /
    • 2013
  • This paper proposes the range and velocity of the object estimation method using a moving camera. Structure and motion (SaM) estimation is to estimate the Euclidean geometry of the object as well as the relative motion between the camera and object. Unlike the previous works, the proposed estimation method can relax the camera and object motion constraints. To this end, we arrange the dynamics of moving camera-moving object relative motion model in an appropriate form such that the nonlinear observer can be employed for the SaM estimation. Through both simulations and experiments we have confirmed the validity of the proposed estimation algorithm.

A Home-Based Remote Rehabilitation System with Motion Recognition for Joint Range of Motion Improvement (관절 가동범위 향상을 위한 원격 모션 인식 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.151-158
    • /
    • 2019
  • Patients with disabilities from various reasons such as disasters, injuries or chronic illness or elderly with limited body motion range due to aging are recommended to participate in rehabilitation programs at hospitals. But typically, it's not as simple for them to commute without help as they have limited access outside of the home. Also, regarding the perspectives of hospitals, having to maintain the workforce and have them take care of the rehabilitation sessions leads them to more expenses in cost aspects. For those reasons, in this paper, a home-based remote rehabilitation system using motion recognition is developed without needing help from others. This system can be executed by a personal computer and a stereo camera at home, the real-time user motion status is monitored using motion recognition feature. The system tracks the joint range of motion(Joint ROM) of particular body parts of users to check the body function improvement. For demonstration, total of 4 subjects with various ages and health conditions participated in this project. Their motion data were collected during all 3 exercise sessions, and each session was repeated 9 times per person and was compared in the results.

3D Range Finding Algorithm Using Small Translational Movement of Stereo Camera (스테레오 카메라의 미소 병진운동을 이용한 3차원 거리추출 알고리즘)

  • Park, Kwang-Il;Yi, Jae-Woong;Oh, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.156-167
    • /
    • 1995
  • In this paper, we propose a 3-D range finding method for situation that stereo camera has small translational motion. Binocular stereo generally tends to produce stereo correspondence errors and needs huge amount of computation. The former drawback is because the additional constraints to regularize the correspondence problem are not always true for every scene. The latter drawback is because they use either correlation or optimization to find correct disparity. We present a method which overcomes these drawbacks by moving the stereo camera actively. The method utilized a motion parallax acquired by monocular motion stereo to restrict the search range of binocular disparity. Using only the uniqueness of disparity makes it possible to find reliable binocular disparity. Experimental results with real scene are presented to demonstrate the effectiveness of this method.

  • PDF

Comparison of Asymmetries on Masseter Muscle Thickness and Range of Motion in Subject With and Without Temporomandibular Disorders (턱관절 장애 유무에 따른 깨물근의 두께와 턱관절 가동범위의 비대칭성 비교)

  • Lee, Ji-won;Yang, Yeon-ju;Won, Jong-im
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.28-36
    • /
    • 2019
  • Background: Temporomandibular disorder (TMD) is characterized by pain and limited range of motion in the jaw. TMD patients generally prefer to chew on the unaffected or less-affected side, and this tendency often results in asymmetries in masseter muscle thickness and range of mandibular motion. Objects: The purpose of this study was to compare the asymmetries in masseter muscle thickness and range of mandibular motion in subjects with and without temporomandibular disorders. Methods: Thirty-nine subjects were divided into two groups: A TMD group ($n_1=19$) and a control group ($n_2=20$). The jaw opening range and laterotrusion were measured using a digital vernier caliper. The masseter muscle thickness was examined in both the resting state and the maximal clenching state using ultrasonography. The absolute asymmetry indices calculated based on the laterotrusion and masseter muscle thickness of the respective right and left sides. A two-way ANOVA and a Mann-Whitney U test were used for statistical analysis. Results: No significant different was found in the masseter muscle thickness between the TMD and control group. A significant difference was found in the absolute asymmetry indices of mandibular laterotrusion between the TMD and control groups (p<.05). Furthermore, the ranges of jaw opening were significantly different between males and females (p<.05). The absolute asymmetry index values of masseter muscle thickness at rest and during maximal clenching were also significantly different between males and females (p<.05). Conclusion: These results demonstrated that the subjects with TMD had a larger degree of asymmetry in laterotrusion than those without TMD. Therefore, a physiotherapy program needs to be designed to restore normal laterotrusion capacities for TMD subjects. These results also showed that female subjects had greater absolute asymmetry indices in masseter muscle thickness than male subjects. Therefore, more training is needed to promote bilaterally balanced chewing among women.

Fast Motion Estimation Algorithm for H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식을 위한 고속 움직임 추정 기법)

  • Yoon Sung-Hyun;Choi Kwon-Yul;Lee Seongsoo;Hong Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1091-1097
    • /
    • 2005
  • In this paper, we propose fast motion estimation algorithm. Local statistics of a motion vector is highly correlated to motion vectors of its neighboring blocks. According to the property, block-based motion search range is adaptively determined in order to reduce unnecessary search points. Based on the determined search range, motion vector is obtained by variable step search motion estimation. Experimental results show that comparing to Full search motion estimation, the motion searching points of proposed algorithm is reduced as much as $98\%$. Moreover, PSNR and Bit Rate are almost same to Full search method.

Real Time Motion Processing for Autonomous Navigation

  • Kolodko, J.;Vlacic, L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.156-161
    • /
    • 2003
  • An overview of our approach to autonomous navigation is presented showing how motion information can be integrated into existing navigation schemes. Particular attention is given to our short range motion estimation scheme which utilises a number of unique assumptions regarding the nature of the visual environment allowing a direct fusion of visual and range information. Graduated non-convexity is used to solve the resulting non-convex minimisation problem. Experimental results show the advantages of our fusion technique.

ISAR Motion Compensation based on Accumulation and Limitation of Consecutive Radar Returns

  • Seo, Dong-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1803-1812
    • /
    • 2000
  • A new motion compensation method for ISAR is presented in this paper. It employs amplitude limiting and integration of consecutive range profiles to improve the range and phase alignment accuracy and to alter the propagation properties of compensation errors. These allow the image quality to be significantly improved. It is shown from the imaging results that the new motion compensation algorithm can get images of targets in field situations with much better quality than the traditional cross-correlation algorithm.

  • PDF