• Title/Summary/Keyword: range camera

Search Result 803, Processing Time 0.029 seconds

An Accurate Extrinsic Calibration of Laser Range Finder and Vision Camera Using 3D Edges of Multiple Planes (다중 평면의 3차원 모서리를 이용한 레이저 거리센서 및 카메라의 정밀 보정)

  • Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • For data fusion of laser range finder (LRF) and vision camera, accurate calibration of external parameters which describe relative pose between two sensors is necessary. This paper proposes a new calibration method which can acquires more accurate external parameters between a LRF and a vision camera compared to other existing methods. The main motivation of the proposed method is that any corner data of a known 3D structure which is acquired by the LRF should be projected on a straight line in the camera image. To satisfy such constraint, we propose a 3D geometric model and a numerical solution to minimize the energy function of the model. In addition, we describe the implementation steps of the data acquisition of LRF and camera images which are necessary in accurate calibration results. In the experiment results, it is shown that the performance of the proposed method are better in terms of accuracy compared to other conventional methods.

A Method for Estimating a Distance Using the Stereo Zoom Lens Module (양안 줌렌즈를 이용한 물체의 거리추정)

  • Hwang, Eun-Seop;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.537-543
    • /
    • 2006
  • A method of estimating the distance using single zoom camera limits a distance range(only optical axis) in field of view. So, in this paper, we propose a method of estimating the distance information in Stereoscopic display using the stereo zoom lens module for estimating the distance in the wide range. The binocular stereo zoom lens system is composed using a horizontal moving camera module. The left and right images are acquired in polarized stereo monitor for getting the conversion and estimating a distance. The error distance is under 10mm which has difference between optically a traced distance and an estimated distance in left and right range $(0mm{\sim}500mm)$ at center. This presents the system using a function of the zoom and conversion has more precise distance information than that of conversion control. Also, a method of estimating a distance from horizontal moving camera is more precise value than that from toe-in camera by comparing the error distance of the two camera methods.

3D Depth Estimation by a Single Camera (단일 카메라를 이용한 3D 깊이 추정 방법)

  • Kim, Seunggi;Ko, Young Min;Bae, Chulkyun;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.281-291
    • /
    • 2019
  • Depth from defocus estimates the 3D depth by using a phenomenon in which the object in the focal plane of the camera forms a clear image but the object away from the focal plane produces a blurred image. In this paper, algorithms are studied to estimate 3D depth by analyzing the degree of blur of the image taken with a single camera. The optimized object range was obtained by 3D depth estimation derived from depth from defocus using one image of a single camera or two images of different focus of a single camera. For depth estimation using one image, the best performance was achieved using a focal length of 250 mm for both smartphone and DSLR cameras. The depth estimation using two images showed the best 3D depth estimation range when the focal length was set to 150 mm and 250 mm for smartphone camera images and 200 mm and 300 mm for DSLR camera images.

Analysis of Image and Development of UV Corona Camera for High-Voltage Discharge Detection (고전압 방전 검출용 자외선 코로나 카메라 개발 및 방전 이미지 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Choi, Myeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.69-74
    • /
    • 2011
  • In this paper, the UV corona camera was developed using the solar blind and Multi Channel Plate(MCP) technology for the target localization of UV image. UV camera developed a $6.4[^{\circ}]{\times}4.8[^{\circ}]$ of the field of view as a conventional camera to diagnose a wide range of slightly enlarged, and power equipment to measure the distance between the camera and the distance meter has been attached. UV camera to measure the discharge count and the UV image was developed, compared with a commercial camera, there was no significant difference. In salt spray environments breakdown voltage was lower than the normal state, thereby discharging the image was rapidly growing phenomenon.

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera (소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어)

  • Kang, Myoungsoo;Hwang, Jaihyuk;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Infrard range finder designed for target moving at medium speed and its application to lens-position control of autofocus camera

  • Tada, Ken-Ichi;Shinohara, Shigenobu;Yoshida, Hirofumi;Ikeda, Hiroaki;Saitoh, Yasuhiro;Nishide, Ken-Ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.394-398
    • /
    • 1992
  • The measurable speed range of the self-mixing type semiconductor laser range finder has been greatly improved by employing a new processing circuit. Using this range finder as an external finder of a single lens reflex (SLR) autofocus (AF) camera, some clear photographs of an object moving at a medium speed of 20 mm/s is obtained.

  • PDF

Assembling three one-camera images for three-camera intersection classification

  • Marcella Astrid;Seung-Ik Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.862-873
    • /
    • 2023
  • Determining whether an autonomous self-driving agent is in the middle of an intersection can be extremely difficult when relying on visual input taken from a single camera. In such a problem setting, a wider range of views is essential, which drives us to use three cameras positioned in the front, left, and right of an agent for better intersection recognition. However, collecting adequate training data with three cameras poses several practical difficulties; hence, we propose using data collected from one camera to train a three-camera model, which would enable us to more easily compile a variety of training data to endow our model with improved generalizability. In this work, we provide three separate fusion methods (feature, early, and late) of combining the information from three cameras. Extensive pedestrian-view intersection classification experiments show that our feature fusion model provides an area under the curve and F1-score of 82.00 and 46.48, respectively, which considerably outperforms contemporary three- and one-camera models.

3 Dimension Deformation Analysis by Close-Range Photogrammetry (근접사진측량에 의한 3차원 변형해석)

  • 배연성;오원진;한승희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.135-140
    • /
    • 2003
  • This study try to surface deformation analyzing and 3-D monitoring of hydro structure by close-range photogrammetry technique using 35mm metric camera. For this, the lens distortion parameters were acquired for 21mm super-wide-angle lens which is mounted in 35mm metric camera. After that, the system designed for absolute deformation analysis of object surface, and examined the application validity Also, optimum photographing condition was derived by calculated the standard deviation of this system. This system can monitor periodically changing of surface area, volume and deformation precisely after placed plate underwater. Finally, this paper suggested efficiency of absolute deformation analysis by using small format camera.

  • PDF