• Title/Summary/Keyword: random variation

Search Result 624, Processing Time 0.027 seconds

Reliability assessment of concrete bridges subject to corrosion-induced cracks during life cycle using artificial neural networks

  • Firouzi, Afshin;Rahai, Alireza
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.91-107
    • /
    • 2013
  • Corrosion of RC bridge decks eventually leads to delamination, severe cracking and spalling of the concrete cover. This is a prevalent deterioration mechanism and demands for the most costly repair interventions during the service life of bridges worldwide. On the other hand, decisions for repairs are usually made whenever the extent of a limit crack width, reported in routine visual inspections, exceeds an acceptable threshold level. In this paper, while random fields are applied to account for spatial variation of governing parameters of the corrosion process, an analytical model is used to simulate the corrosion induced crack width. However when dealing with random fields, the Monte Carlo simulation is apparently an inefficient and time consuming method, hence the utility of neural networks as a surrogate in simulation is investigated and found very promising. The proposed method can be regarded as an invaluable tool in decision making concerning maintenance of bridges.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

Random Amplified Polymorphic DNA (RAPD) Identification of Genetic Variation in Chlorella species

  • CHO Jung Jong;KIM Yong-Tae;HUR Sung Bum;KIM Young Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.761-769
    • /
    • 1996
  • The random amplified polymorphic DNA (RAPD) technique was used to characterize 18 reference strains of microalgae, mostly Chlorella species, collected from various localities around Korea peninsular. Eighteen strains consist of four genera of the family marine Chlorella from 12 samples, two genera of fresh water Chlorella from three samples, and three genera on Nannochloris. Twenty 10-mer anonymous primers were screened for amplification of genomic DNA extracted from samples using the CTAB extraction method. Nineteen of these oligonucleotide primers were positive or band producing. Three of 20 random primers (OPA 10, OPA 12, and OPA 18) resulted in both clear band and a high degree of reproducibility and showed some potential to be used to discriminate individual samples of both genetically hetero-and homogeneous populations, in determining phylogenetic relationships between species within a genus and developing individual fingerprints for each samples.

  • PDF

Robust design of liquid column vibration absorber in seismic vibration mitigation considering random system parameter

  • Debbarma, Rama;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1127-1141
    • /
    • 2015
  • The optimum design of liquid column dampers in seismic vibration control considering system parameter uncertainty is usually performed by minimizing the unconditional response of a structure without any consideration to the variation of damper performance due to uncertainty. However, the system so designed may be sensitive to the variations of input system parameters due to uncertainty. The present study is concerned with robust design optimization (RDO) of liquid column vibration absorber (LCVA) considering random system parameters characterizing the primary structure and ground motion model. The RDO is obtained by minimizing the weighted sum of the mean value of the root mean square displacement of the primary structure as well as its standard deviation. A numerical study elucidates the importance of the RDO procedure for design of LCVA system by comparing the RDO results with the results obtained by the conventional stochastic structural optimization procedure and the unconditional response based optimization.

Effect of Random Poisson's Ratio on the Response Variability of Composite Plates

  • Noh, Hyuk-Chun;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.727-737
    • /
    • 2010
  • Together with the Young's modulus the Poisson's ratio is another independent material parameter that governs the behavior of a structural system. Therefore, it is meaningful to evaluate separately the influence of the parameter on the random response of the structural system. To this end, a formulation dealing with the spatial randomness in the Poisson's ratio in laminated composite plates is proposed. The main idea of the paper is to transform the fraction form of the constitutive coefficients into the expanded form in an ascending order of the stochastic field function. To validate the adequacy of the formulation, a square plate is chosen and the computation results are compared with those obtained using conventional Monte Carlo simulation. It is observed that the results show good agreement with those by the Monte Carlo simulation(MCS).

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Selective Operating Preamplifier Circuit for Low Voltage Static Random Access Memory (저전압 에스램용 선별 동작 사전 증폭 회로)

  • Jeong, Hanwool
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.309-314
    • /
    • 2021
  • The proposed preamplifier for the static random access memory reduces the time required for the sense amplifier enable during the read operation by 55%, which leads to a significant speed up the total spped. This is attirbuted to the novel circuit techqniue that cancels out the transistor mismatch which is induced by the process variation. In addition, a selective enable circuit for preamplifier circuit is proposed, so the proposed preamplifier is enabled only when it is required. Accordingly the energy overhead is limited below 4.45%.

Genetic Variation in Fusarium oxysporum f. sp. fagariae Populations Based RAPD and rDNA RFLP Analyses

  • Nagaraian, Gopal;Nam, Myeong-Hyeon;Song, Jeong-Young;Yoo, Sung-Joon;Kim, Hong-Gi
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.264-270
    • /
    • 2004
  • Fusarium oxysporum f. sp. fragariae is a fungal pathogen causing strawberry wilt disease. The random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs) of intergenic spacer (IGS) region of rDNA were used to identify genetic variation among 22 F. oxysporum f. sp. fragariae isolates. All isolates could be distinguished from each other by RAPD analysis and RFLP of 2.6 kb amplified with primer CNS1 and CNL12 for IGS region of rDNA. Cluster analysis using UPGMA showed eight distinct clusters based on the banding patterns obtained from RAPD and rDNA RFLP. These results indicate that F. oxysporum f. sp. fragariae isolates are genetically distinct from each other, There was a high level genetic variation among F. oxysporum f. sp. fragariae.

LONG-TERM STREAMFLOW SENSITIVITY TO RAINFALL VARIABILITY UNDER IPCC SRES CLIMATE CHANGE SCENARIO

  • Kang, Boo-sik;Jorge a. ramirez, Jorge-A.-Ramirez
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.81-99
    • /
    • 2004
  • Long term streamflow regime under virtual climate change scenario was examined. Rainfall forecast simulation of the Canadian Global Coupled Model (CGCM2) of the Canadian Climate Center for modeling and analysis for the IPCC SRES B2 scenario was used for analysis. The B2 scenario envisions slower population growth (10.4 billion by 2010) with a more rapidly evolving economy and more emphasis on environmental protection. The relatively large scale of GCM hinders the accurate computation of the important streamflow characteristics such as the peak flow rate and lag time, etc. The GCM rainfall with more than 100km scale was downscaled to 2km-scale using the space-time stochastic random cascade model. The HEC-HMS was used for distributed hydrologic model which can take the grid rainfall as input data. The result illustrates that the annual variation of the total runoff and the peak flow can be much greater than rainfall variation, which means actual impact of rainfall variation for the available water resources can be much greater than the extent of the rainfall variation.

  • PDF

Influence Function on the Coefficient of Variation (변이계수에 대한 영향함수)

  • Lee, Yun-Hee;Kim, Hong-Gie
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.509-516
    • /
    • 2008
  • We derive the influence function on the coefficient of variation. Empirical influence function and Sample influence function are used to verify the validity of the derived influence function. To show the validity of the influence function, we carry out simulations with random samples from normal distribution $N(20,1^2)$ and $N(20,5^2)$, respectively. The simulation result proves that the derived influence function is very accurate in estimating changes in the coefficient of variation when an observation is deleted.