This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.
트래픽 부하 측정은 네트웍 트래픽 엔지니어링의 기반이 된다. 그러나 고속 링크에서 트래픽 부하 정보를 얻기 위해 모든 패킷을 측정하는 것은, 라우터의 패킷 포워딩 성능을 저해시키므로 확장성이 결여된다. 이에 따라 샘플링 기법이 트래픽 측정의 대안으로 제시되었다. 샘플링은 라우터의 성능 저해를 최소화시킬 수 있으나 샘플링으로 예측되는 트래픽 부하는 실제 트래픽 부하와 차이를 보이게 되며, 이와 같은 오류가 제한되지 못한다면 측정값을 기반으로 하는 응용들에 부영향을 미치게 된다. 본 논문에서는 샘플링 오류를 오류 허용범위 내로 제한시킬 수 있는 적응성 있는 패킷 샘플링 기법을 제안한다. 제안 기법은 수학적 분석을 통해 얻어진 부하 예측 오류에 영향을 미치는 주요 트래픽 파라메터를 각 블록의 시작마다 예측하여 샘플링 확률을 동적으로 적응시킨다. 본 논문에서는 또한 실제 측정된 인터넷 트래픽을 이용하여 제안 기법의 확장성과 성능을 검증하였다
This paper proposes a new method for generation of uniform random numbers using binary random sequences. These binary sequences are obtained from a de Bruijn sequence by random sampling method. Several statistical tests are carried out for the random numbers generated by the proposed method, and it is shown that the random numbers have good random properties.
본 논문에서는 사회적으로나 개인적으로 매우 민감한 조사에서 세대별, 연령별 또는 계층별에 따라 조사하고자 하는 모집단이 여러 개의 층으로 구성되어 있고, 각 층이 다지속성으로 되어 있는 경우에, Abul-Ela 등의 다지모형과 Eriksson의 다지무관모형에서 사용한 단순임의추출법 대신에 층화추출법을 적용하여 각 층의 다지속성에 대한 모비율의 추정뿐만 아니라 모집단 전체 모비율에 대한 추정을 할 수 있는 층화 다지 확률화응답모형을 제안하였다. 그리고 층화 다지모형에 있어서 각 층의 표본배분에 대하여 비례배분과 최적배분을 고려하여 다루었다. 또한 층화 다지 확률화응답모형들간의 효율성을 비교해 본 결과 Eriksson의 다지무관모형이 Abul-Ela 등의 다지모형보다 효율적임을 알 수 있었다.
Since there are multiple random variables in the probabilistic load flow (PLF) calculation of distribution system containing distributed generation (DG) and electric vehicle charging load (EVCL), a Monte Carlo method based on composite sampling method is put forward according to the existing simple random sampling Monte Carlo simulation method (SRS-MCSM) to perform probabilistic assessment analysis of voltage quality of distribution system containing DG and EVCL. This method considers not only the randomness of wind speed and light intensity as well as the uncertainty of basic load and EVCL, but also other stochastic disturbances, such as the failure rate of the transmission line. According to the different characteristics of random factors, different sampling methods are applied. Simulation results on IEEE9 bus system and IEEE34 bus system demonstrates the validity, accuracy, rapidity and practicability of the proposed method. In contrast to the SRS-MCSM, the proposed method is of higher computational efficiency and better simulation accuracy. The variation of nodal voltages for distribution system before and after connecting DG and EVCL is compared and analyzed, especially the voltage fluctuation of the grid-connected point of DG and EVCL.
For the evaluation of safety margin of a nuclear power plant using a conservative methodology, the influence of applied assumptions such as initial conditions and boundary conditions needs to be assessed deliberately. Usually, a combination of the most conservative initial conditions is determined, and the safety margin for the transient is evaluated through the analysis for this conservative conditions. In existing conservative methodologies, a most-conservative condition is searched through the analyses for the maximum, minimum, and nominal values of the major parameters. In the present study, we investigates a new approach which can be applied to choose a most-conservative initial condition effectively when a best-estimate computer code and a conservative evaluation methodology are utilized for the evaluation of safety margin of transients. By constituting the band of various initial conditions using the random sampling of input parameters, the sensitivity study for various parameters are performed systematically. A method of sampling the value of control or operation parameters for a certain range is adopted by use of MOSAIQUE program, which enables to minimize the efforts for achieving the steady-state for various different conditions. A representative control parameter is identified, which governs the reactor coolant flow rate, pressurizer pressure, pressurizer level, and steam generator level, respectively. It is shown that an appropriate distribution of input parameter is obtained by adjusting the range and distribution of the control parameter.
International Journal of Internet, Broadcasting and Communication
/
제11권4호
/
pp.37-42
/
2019
In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.
최근 들어 데이터 마이닝의 분류문제에 있어 목표변수의 불균형 문제가 많은 관심을 받고 있다. 이러한 문제를 해결하기 위해, 이전 연구들은 원 자료에 대하여 데이터 전처리 과정을 실시했는데, 전처리 과정에는 목표변수의 다수계급을 소수계급의 비율에 맞게 조정하는 과소표집법, 소수계급을 복원추출하여 다수계급의 비율에 맞게 조정하는 과대표집법, 소수계급에 K-최근접 이웃 방법 등을 활용하여 과대표집법을 적용 후 다수계급에는 과소표집법을 적용한 하이브리드 기법 등이 있다. 또한 앙상블 기법도 이러한 불균형 데이터의 분류 성능을 높일 수 있다고 알려져 있어, 본 논문에서는 데이터의 전처리 과정과 앙상블 기법을 함께 고려한 여러 모형들을 사용하여, 불균형 자료에 대한 이들모형의 분류성능을 비교평가한다.
Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling
This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.