• 제목/요약/키워드: random sampling

검색결과 1,340건 처리시간 0.023초

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

트래픽 부하측정을 위한 적응성 있는 랜덤 패킷 샘플링 기법 (Adaptive Random Pocket Sampling for Traffic Load Measurement)

  • 박재성;최백영
    • 한국통신학회논문지
    • /
    • 제28권11B호
    • /
    • pp.1038-1049
    • /
    • 2003
  • 트래픽 부하 측정은 네트웍 트래픽 엔지니어링의 기반이 된다. 그러나 고속 링크에서 트래픽 부하 정보를 얻기 위해 모든 패킷을 측정하는 것은, 라우터의 패킷 포워딩 성능을 저해시키므로 확장성이 결여된다. 이에 따라 샘플링 기법이 트래픽 측정의 대안으로 제시되었다. 샘플링은 라우터의 성능 저해를 최소화시킬 수 있으나 샘플링으로 예측되는 트래픽 부하는 실제 트래픽 부하와 차이를 보이게 되며, 이와 같은 오류가 제한되지 못한다면 측정값을 기반으로 하는 응용들에 부영향을 미치게 된다. 본 논문에서는 샘플링 오류를 오류 허용범위 내로 제한시킬 수 있는 적응성 있는 패킷 샘플링 기법을 제안한다. 제안 기법은 수학적 분석을 통해 얻어진 부하 예측 오류에 영향을 미치는 주요 트래픽 파라메터를 각 블록의 시작마다 예측하여 샘플링 확률을 동적으로 적응시킨다. 본 논문에서는 또한 실제 측정된 인터넷 트래픽을 이용하여 제안 기법의 확장성과 성능을 검증하였다

Random number generation by use of de Bruijin sequence

  • Harada, Hiroshi;Kashiwagi, Hiroshi;Oguri, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1033-1036
    • /
    • 1988
  • This paper proposes a new method for generation of uniform random numbers using binary random sequences. These binary sequences are obtained from a de Bruijn sequence by random sampling method. Several statistical tests are carried out for the random numbers generated by the proposed method, and it is shown that the random numbers have good random properties.

  • PDF

층화 다지 확률화응답모형 (A Stratified Multi-proportions Randomized Response Model)

  • 이기성;박경순
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1113-1120
    • /
    • 2015
  • 본 논문에서는 사회적으로나 개인적으로 매우 민감한 조사에서 세대별, 연령별 또는 계층별에 따라 조사하고자 하는 모집단이 여러 개의 층으로 구성되어 있고, 각 층이 다지속성으로 되어 있는 경우에, Abul-Ela 등의 다지모형과 Eriksson의 다지무관모형에서 사용한 단순임의추출법 대신에 층화추출법을 적용하여 각 층의 다지속성에 대한 모비율의 추정뿐만 아니라 모집단 전체 모비율에 대한 추정을 할 수 있는 층화 다지 확률화응답모형을 제안하였다. 그리고 층화 다지모형에 있어서 각 층의 표본배분에 대하여 비례배분과 최적배분을 고려하여 다루었다. 또한 층화 다지 확률화응답모형들간의 효율성을 비교해 본 결과 Eriksson의 다지무관모형이 Abul-Ela 등의 다지모형보다 효율적임을 알 수 있었다.

Probabilistic Evaluation of Voltage Quality on Distribution System Containing Distributed Generation and Electric Vehicle Charging Load

  • CHEN, Wei;YAN, Hongqiang;PEI, Xiping
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1743-1753
    • /
    • 2017
  • Since there are multiple random variables in the probabilistic load flow (PLF) calculation of distribution system containing distributed generation (DG) and electric vehicle charging load (EVCL), a Monte Carlo method based on composite sampling method is put forward according to the existing simple random sampling Monte Carlo simulation method (SRS-MCSM) to perform probabilistic assessment analysis of voltage quality of distribution system containing DG and EVCL. This method considers not only the randomness of wind speed and light intensity as well as the uncertainty of basic load and EVCL, but also other stochastic disturbances, such as the failure rate of the transmission line. According to the different characteristics of random factors, different sampling methods are applied. Simulation results on IEEE9 bus system and IEEE34 bus system demonstrates the validity, accuracy, rapidity and practicability of the proposed method. In contrast to the SRS-MCSM, the proposed method is of higher computational efficiency and better simulation accuracy. The variation of nodal voltages for distribution system before and after connecting DG and EVCL is compared and analyzed, especially the voltage fluctuation of the grid-connected point of DG and EVCL.

무작위 추출 방법을 이용한 원자력발전소 보수적 안전해석 조건 결정 (Identification of the Most Conservative Condition for the Safety Analysis of a Nuclear Power Plant by Use of Random Sampling)

  • 정해용
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.131-137
    • /
    • 2015
  • For the evaluation of safety margin of a nuclear power plant using a conservative methodology, the influence of applied assumptions such as initial conditions and boundary conditions needs to be assessed deliberately. Usually, a combination of the most conservative initial conditions is determined, and the safety margin for the transient is evaluated through the analysis for this conservative conditions. In existing conservative methodologies, a most-conservative condition is searched through the analyses for the maximum, minimum, and nominal values of the major parameters. In the present study, we investigates a new approach which can be applied to choose a most-conservative initial condition effectively when a best-estimate computer code and a conservative evaluation methodology are utilized for the evaluation of safety margin of transients. By constituting the band of various initial conditions using the random sampling of input parameters, the sensitivity study for various parameters are performed systematically. A method of sampling the value of control or operation parameters for a certain range is adopted by use of MOSAIQUE program, which enables to minimize the efforts for achieving the steady-state for various different conditions. A representative control parameter is identified, which governs the reactor coolant flow rate, pressurizer pressure, pressurizer level, and steam generator level, respectively. It is shown that an appropriate distribution of input parameter is obtained by adjusting the range and distribution of the control parameter.

Experimental Analysis of Equilibrization in Binary Classification for Non-Image Imbalanced Data Using Wasserstein GAN

  • Wang, Zhi-Yong;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.

데이터 전처리와 앙상블 기법을 통한 불균형 데이터의 분류모형 비교 연구 (A Comparison of Ensemble Methods Combining Resampling Techniques for Class Imbalanced Data)

  • 이희재;이성임
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.357-371
    • /
    • 2014
  • 최근 들어 데이터 마이닝의 분류문제에 있어 목표변수의 불균형 문제가 많은 관심을 받고 있다. 이러한 문제를 해결하기 위해, 이전 연구들은 원 자료에 대하여 데이터 전처리 과정을 실시했는데, 전처리 과정에는 목표변수의 다수계급을 소수계급의 비율에 맞게 조정하는 과소표집법, 소수계급을 복원추출하여 다수계급의 비율에 맞게 조정하는 과대표집법, 소수계급에 K-최근접 이웃 방법 등을 활용하여 과대표집법을 적용 후 다수계급에는 과소표집법을 적용한 하이브리드 기법 등이 있다. 또한 앙상블 기법도 이러한 불균형 데이터의 분류 성능을 높일 수 있다고 알려져 있어, 본 논문에서는 데이터의 전처리 과정과 앙상블 기법을 함께 고려한 여러 모형들을 사용하여, 불균형 자료에 대한 이들모형의 분류성능을 비교평가한다.

타겟 샘플링 검사를 통한 출하품질 향상에 관한 사례 연구 (A Case Study on the Target Sampling Inspection for Improving Outgoing Quality)

  • 김준세;이창기;김경남;김창우;송혜미;안성수;오재원;조현상;한상섭
    • 품질경영학회지
    • /
    • 제49권3호
    • /
    • pp.421-431
    • /
    • 2021
  • Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling

Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

  • Song, Chang Yong
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.316-324
    • /
    • 2020
  • This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.