• 제목/요약/키워드: random processes

검색결과 372건 처리시간 0.026초

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan;Zhangjun Liu;Xinxin Ruan;Bohang Xu
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.1-13
    • /
    • 2024
  • In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

A Study on Diabetes Management System Based on Logistic Regression and Random Forest

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.61-68
    • /
    • 2024
  • In the quest for advancing diabetes diagnosis, this study introduces a novel two-step machine learning approach that synergizes the probabilistic predictions of Logistic Regression with the classification prowess of Random Forest. Diabetes, a pervasive chronic disease impacting millions globally, necessitates precise and early detection to mitigate long-term complications. Traditional diagnostic methods, while effective, often entail invasive testing and may not fully leverage the patterns hidden in patient data. Addressing this gap, our research harnesses the predictive capability of Logistic Regression to estimate the likelihood of diabetes presence, followed by employing Random Forest to classify individuals into diabetic, pre-diabetic or nondiabetic categories based on the computed probabilities. This methodology not only capitalizes on the strengths of both algorithms-Logistic Regression's proficiency in estimating nuanced probabilities and Random Forest's robustness in classification-but also introduces a refined mechanism to enhance diagnostic accuracy. Through the application of this model to a comprehensive diabetes dataset, we demonstrate a marked improvement in diagnostic precision, as evidenced by superior performance metrics when compared to other machine learning approaches. Our findings underscore the potential of integrating diverse machine learning models to improve clinical decision-making processes, offering a promising avenue for the early and accurate diagnosis of diabetes and potentially other complex diseases.

다제품 회분식 공정 생산계획 자동화 및 최적화 (Automatic Optimal Scheduler for Multiproduct Batch Processes)

  • 이경범
    • 제어로봇시스템학회논문지
    • /
    • 제22권12호
    • /
    • pp.1040-1045
    • /
    • 2016
  • An inventory control system was developed for multiproduct batch plants with an arbitrary number of batch processes and storage units. Customer orders are received by the plant at intervals and in quantities that are subject to random fluctuations. The objective of the plant operation is to minimize the total cost while maintaining inventory levels within the storage or warehouse capacity by adjusting the startup times, the quantities of raw material orders, and production batch sizes. An adaptive model-based control algorithm was developed that uses a periodic square wave model to represent the flows of material between the processes and the storage units. The effectiveness of this approach was demonstrated by performing simulations.

지반성질 불확실성을 고려한 사면안정 해석 (Assessment of Slope Stability With the Uncertainty in Soil Property Characterization)

  • 김진만
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.123-130
    • /
    • 2003
  • The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.

  • PDF

A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process

  • Park, Youngho;Hyun, Sangil;Hong, Youn-Woo
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.596-600
    • /
    • 2019
  • Artificial intelligence with a sufficient amount of realistic big data in certain applications has been demonstrated to play an important role in designing new materials or in manufacturing high-quality products. To reduce cracks in ceramic products using machine learning, it is desirable to utilize big data in recently developed data-driven optimization schemes. However, there is insufficient big data for ceramic processes. Therefore, we developed a numerical algorithm to make "virtual" manufacturing data sets using indirect methods such as computer simulations and image processing. In this study, a numerical algorithm based on the random walk was demonstrated to generate images of cracks by adjusting the conditions of the random walk process such as the number of steps, changes in direction, and the number of cracks.

Bluffbody 비정상 유동장에 대한 수치해석 (Numerical simulation of unsteady flow field behind bluff body)

  • 류명석;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

ESTIMATION OF THE DISTRIBUTION FUNCTION FOR STATIONARY RANDOM FIELDS OF ASSOCIATED PROCESSES

  • Kim, Tae-Sung;Ko, Mi-Hwa;Yoo, Yeon-Sun
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.169-177
    • /
    • 2004
  • For a stationary field $\{X_{\b{j}},\b{j}{\;}\in{\;}{\mathbb{Z}}^d_{+}\}$ of associated random variables with distribution function $F(x)\;=\;P(X_{\b{1}}\;{\leq}\;x)$ we study strong consistency and asymptotic normality of the empirical distribution function, which is proposed as an estimator for F(x). We also consider strong consistency and asymptotic normality of the empirical survival function by applying these results.

A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties

  • Singh, B.N.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.53-74
    • /
    • 2002
  • Composites exhibit larger dispersion in their material properties compared to conventional materials due to larger number of parameters associated with their manufacturing processes. A $C^0$ finite element method has been used for arriving at an eigenvalue problem using higher order shear deformation theory for initial buckling of laminated composite plates. The material properties have been modeled as basic random variables. A mean-centered first order perturbation technique has been used to find the probabilistic characteristics of the buckling loads with different edge conditions. Results have been compared with Monte Carlo simulation, and those available in literature.

ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES WITH APPLICATION TO MOVING AVERAGE PROCESSES

  • Sung, Soo-Hak
    • 대한수학회보
    • /
    • 제46권4호
    • /
    • pp.617-626
    • /
    • 2009
  • Let {$Y_i$,-$\infty$ < i < $\infty$} be a doubly infinite sequence of i.i.d. random variables with E|$Y_1$| < $\infty$, {$a_{ni}$,-$\infty$ < i < $\infty$ n $\geq$ 1} an array of real numbers. Under some conditions on {$a_{ni}$}, we obtain necessary and sufficient conditions for $\sum\;_{n=1}^{\infty}\frac{1}{n}P(|\sum\;_{i=-\infty}^{\infty}a_{ni}(Y_i-EY_i)|$>$n{\epsilon})$<{\infty}$. We examine whether the result of Spitzer [11] holds for the moving average process, and give a partial solution.

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.