• Title/Summary/Keyword: random polynomials

Search Result 41, Processing Time 0.026 seconds

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

B-spline polynomials models for analyzing growth patterns of Guzerat young bulls in field performance tests

  • Ricardo Costa Sousa;Fernando dos Santos Magaco;Daiane Cristina Becker Scalez;Jose Elivalto Guimaraes Campelo;Clelia Soares de Assis;Idalmo Garcia Pereira
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.817-825
    • /
    • 2024
  • Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.

Longitudinal Analysis of Body Weight and Feed Intake in Selection Lines for Residual Feed Intake in Pigs

  • Cai, W.;Wu, H.;Dekkers, J.C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • A selection experiment for reduced residual feed intake (RFI) in Yorkshire pigs consisted of a line selected for lower RFI (LRFI) and a random control line (CTRL). Longitudinal measurements of daily feed intake (DFI) and body weight (BW) from generation 5 of this experiment were used. The objectives of this study were to evaluate the use of random regression (RR) and nonlinear mixed models to predict DFI and BW for individual pigs, accounting for the substantial missing information that characterizes these data, and to evaluate the effect of selection for RFI on BW and DFI curves. Forty RR models with different-order polynomials of age as fixed and random effects, and with homogeneous or heterogeneous residual variance by month of age, were fitted for both DFI and BW. Based on predicted residual sum of squares (PRESS) and residual diagnostics, the quadratic polynomial RR model was identified to be best, but with heterogeneous residual variance for DFI and homogeneous residual variance for BW. Compared to the simple quadratic and linear regression models for individual pigs, these RR models decreased PRESS by 1% and 2% for DFI and by 42% and 36% for BW on boars and gilts, respectively. Given the same number of random effects as the polynomial RR models, i.e., two for BW and one for DFI, the non-linear Gompertz model predicted better than the polynomial RR models but not as good as higher order polynomial RR models. After five generations of selection for reduced RFI, the LRFI line had a lower population curve for DFI and BW than the CTRL line, especially towards the end of the growth period.

Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows

  • Park, Byoungho;Lee, Deukhwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.915-921
    • /
    • 2006
  • Various random regression models with different order of Legendre polynomials for permanent environmental and genetic effects were constructed to predict future milk yield of Holstein cows in Korea. A total of 257,908 test-day (TD) milk yield records from a total of 28,135 cows belonging to 1,090 herds were considered for estimating (co)variance of the random covariate coefficients using an expectation-maximization REML algorithm in an animal mixed model. The variances did not change much between the models, having different order of Legendre polynomial, but a decreasing trend was observed with increase in the order of Legendre polynomial in the model. The R-squared value of the model increased and the residual variance reduced with the increase in order of Legendre polynomial in the model. Therefore, a model with $5^{th}$ order of Legendre polynomial was considered for predicting future milk yield. For predicting the future milk yield of cows, 132,771 TD records from 28,135 cows were randomly selected from the above data by way of preceding partial TD record, and then future milk yields were estimated using incomplete records from each cow randomly retained. Results suggested that we could predict the next four months milk yield with an error deviation of 4 kg. The correlation of more than 70% between predicted and observed values was estimated for the next four months milk yield. Even using only 3 TD records of some cows, the average milk yield of Korean Holstein cows would be predicted with high accuracy if compared with observed milk yield. Persistency of each cow was estimated which might be useful for selecting the cows with higher persistency. The results of the present study suggested the use of a $5^{th}$ order Legendre polynomial to predict the future milk yield of each cow.

Optimization of inlet concentration condition for uniform film growth in a cylindrical CVD chamber (원통형 화학증착로에서 균일한 박막형성을 위한 입구 농도분포의 최적화)

  • Jo, Won-Guk;Choe, Do-Hyeong;Kim, Mun-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 1998
  • An optimization procedure to find the inlet concentration profile that yields the most uniform deposition rate in a cylindrical CVD chamber has been developed. Assuming that the chemical reaction time is negligibly small, a SIMPLE based finite-volume method is adopted to solve the fully elliptic equations for momentum, temperature, and concentration. The inlet concentration profile is expressed by a linear combination of Chebyshev polynomials and the coefficients of which are determined by the local random search technique. It is shown that the present method is very effective in improving the uniformity of the deposition rate, especially when Re is high and/or the wafer is placed close to the inlet. The optimal profiles have been obtained for various Re, Gr, and geometry combinations.

Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

  • Canaza-Cayo, Ali William;Lopes, Paulo Savio;da Silva, Marcos Vinicius Gualberto Barbosa;de Almeida Torres, Robledo;Martins, Marta Fonseca;Arbex, Wagner Antonio;Cobuci, Jaime Araujo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1407-1418
    • /
    • 2015
  • A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield ($PS_i$) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of $PS_7$ would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

Prediction of random-regression coefficient for daily milk yield after 305 days in milk by using the regression-coefficient estimates from the first 305 days

  • Yamazaki, Takeshi;Takeda, Hisato;Hagiya, Koichi;Yamaguchi, Satoshi;Sasaki, Osamu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1542-1549
    • /
    • 2018
  • Objective: Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a RR model. Methods: We analyzed test-day milk records from 85,690 Holstein cows in their first lactations and 131,727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. Results: The first-order Legendre polynomials were practical covariates of RR for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Conclusion: Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.

A Study on Public Key Cryptosystem for Computer Communication Networks (컴퓨터 통신 NETWORK를 위한 공개키 암호 시스템에 관한 연구)

  • 구기준;이영노;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.206-212
    • /
    • 1992
  • In this paper, a public key cryptosystem for security in computer communication networks is proposed. This is based on the security to a difficulty of factorization. For the proposed public key polynomials and the random intergers, then the ciphertext is computed. The security of proposed public key knapsack cryptosystem is verified with digital simulation.

  • PDF

CONSTANT-ROUND PRIVACY PRESERVING MULTISET UNION

  • Hong, Jeongdae;Kim, Jung Woo;Kim, Jihye;Park, Kunsoo;Cheon, Jung Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1799-1816
    • /
    • 2013
  • Privacy preserving multiset union (PPMU) protocol allows a set of parties, each with a multiset, to collaboratively compute a multiset union secretly, meaning that any information other than union is not revealed. We propose efficient PPMU protocols, using multiplicative homomorphic cryptosystem. The novelty of our protocol is to directly encrypt a polynomial by representing it by an element of an extension field. The resulting protocols consist of constant rounds and improve communication cost. We also prove the security of our protocol against malicious adversaries, in the random oracle model.

Dual Image Reversible Data Hiding Scheme Based on Secret Sharing to Increase Secret Data Embedding Capacity (비밀자료 삽입용량을 증가시키기 위한 비밀 공유 기반의 이중 이미지 가역 정보은닉 기법)

  • Kim, Pyung Han;Ryu, Kwan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1291-1306
    • /
    • 2022
  • The dual image-based reversible data hiding scheme embeds secret data into two images to increase the embedding capacity of secret data. The dual image-based reversible data hiding scheme can transmit a lot of secret data. Therefore, various schemes have been proposed until recently. In 2021, Chen and Hong proposed a dual image-based reversible data hiding scheme that embeds a large amount of secret data using a reference matrix, secret data, and bit values. However, in this paper, more secret data can be embedded than Chen and Hong's scheme. To achieve this goal, the proposed scheme generates polynomials and shared values using secret sharing scheme, and embeds secret data using reference matrix and septenary number, and random value. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other dual image-based reversible data hiding schemes.