Browse > Article
http://dx.doi.org/10.5713/ajas.14.0620

Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle  

Canaza-Cayo, Ali William (Facultad de Ciencias Agrarias, Universidad Nacional del Altiplano)
Lopes, Paulo Savio (Animal Science Departament, Universidade Federal de Vicosa)
da Silva, Marcos Vinicius Gualberto Barbosa (Embrapa Gado de Leite)
de Almeida Torres, Robledo (Animal Science Departament, Universidade Federal de Vicosa)
Martins, Marta Fonseca (Embrapa Gado de Leite)
Arbex, Wagner Antonio (Embrapa Gado de Leite)
Cobuci, Jaime Araujo (Animal Science Department, Universidade Federal do Rio Grande do Sul)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.10, 2015 , pp. 1407-1418 More about this Journal
Abstract
A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield ($PS_i$) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of $PS_7$ would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.
Keywords
Genetic Trend; Genetic Parameters; Lactation Persistency; Legendre's Polynomials; Random Regression Model; Cattle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pereira, R. J., P. S. Lopes, R. S. Verneque, M. L. Santana Junior, M. R. Lagrotta, and R. A. Torres. 2010. Covariance functions for test-day milk yield in Gir cattle. Pesq. Agropec. Bras. 45:1303-1311.   DOI   ScienceOn
2 Pereira, R. J., R. S. Verneque, P. S. Lopes, M. L. Santana Junior, M. R. Lagrotta, R. A. Torres, A. E. Vercesi Filho, and M. A. Machado. 2012. Milk yield persistency in Brazilian Gyr cattle based on a random regression model. Genet. Mol. Res. 11:1599-1609.   DOI   ScienceOn
3 Pool, M. H., L. L. G. Janss, and T. H. E. Meuwissen. 2000. Genetic parameters of legendre polynomials for first parity lactation curves. J. Dairy Sci. 83:2640-2649.   DOI   ScienceOn
4 Schwarz, G. 1978. Estimating the dimension of a model. Ann. Statist. 6:461-464.   DOI
5 Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In: Proc. 2nd Int. Symp. Information Theory (Eds. B. N. Petrov and F. Csaki). Akademia Kiado, Budapest, Hungary. pp. 267-281.
6 Biassus, I. O., J. A. Cobuci, C. N. Costa, P. R. N. Rorato, J. Braccini Neto, and L. L. Cardoso. 2010. Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models. Rev. Bras. Zootec. 39:2617-2624.   DOI
7 Biassus, I. O., J. A. Cobuci, C. N. Costa, P. R. N. Rorato, J. Braccini Neto, and L. L. Cardoso. 2011. Genetic parameters for production traits in primiparous Holstein cows estimated by random regression models. Rev. Bras. Zootec. 40:85-94.   DOI
8 Bignardi, A. B., L. El Faro, V. L. Cardoso, P. F. Machado, and L. G. Albuquerque. 2009. Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livest. Sci. 123:1-7.   DOI   ScienceOn
9 Boligon, A. A., P. R. N. Rorato, G. B. B. Ferreira, T. Weber, C. J. Kippert, and J. Andreazza. 2005 Heritability and genetic trend for milk and fat yields in Holstein herds raised in the state of Rio Grande do Sul. Rev. Bras. Zootec. 34:1512-1518.   DOI
10 Bohmanova, J., F. Miglior, J. Jamrozik, I. Misztal, and P. G. Sullivan. 2008. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. J. Dairy Sci. 91:3627-3638.   DOI   ScienceOn
11 Bozdogan, H. 2000. Akaike's information criterion and recent developments in information complexity. J. Math. Psychol. 44:62-91.   DOI   ScienceOn
12 Chaves, L. C. S. 2009. Genetic evaluation of dairy buffaloes using random regression model. Ph.D Thesis, Universidade Federal de Vicosa, Vicosa, MG, Brazil.
13 Costa, C. N., C. M. R. Melo, C. H. C. Machado, A. F. Freitas, I. U. Packer, and J. A. Cobuci. 2005. Estimation of genetic parameters for test day milk records of first lactation Gyr cows using repeatability and random regression animal models. Rev. Bras. Zootec. 34:1519-1530.   DOI
14 Cobuci, J. A., R. F. Euclydes, C. N. Costa, P. S. Lopes, R. A. Torres, and C. S. Pereira. 2004. Analysis of persistency in the lactation of Holstein cows using test-day yield and random regression model. Rev. Bras. Zootec. 33:546-554.   DOI   ScienceOn
15 Cobuci, J. A., C. N. Costa, N. M. Teixeira, and A. F. Freitas. 2006. Use of Legendre polynomials and Wilmink function in genetic evaluations for persistency of lactation in Holstein cows. Arq. Bras. Med. Vet. Zootec. 58:614-623.   DOI
16 Dorneles, C. K. P., J. A. Cobuci, P. R. N. Rorato, T. Weber, J. S. Lopes, and H. N. Oliveira. 2009a. Estimation of genetic parameters for Holstein cows milk production by random regression. Arq. Bras. Med. Vet. Zootec. 61:407-412.   DOI
17 Cobuci, J. A., R. F. Euclydes, C. N. Costa, R. A. Torres, P. S. Lopes, and A. S. Pereira. 2007. Genetic evaluation for persistency of lactation in Holstein cows using a random regression model. Genet. Mol. Biol. 30:349-355.   DOI
18 Cobuci, J. A. and C. N. Costa. 2012. Persistency of lactation using random regression models and different fixed regression modeling approaches. Rev. Bras. Zootec. 41:1996-2004.   DOI
19 De Roos, A. P. W., A. G. F. Harbers, and G. De Jong. 2004. Random herd curves in a test-day model for milk, fat, and protein production of Dairy Cattle in the Netherlands. J. Dairy Sci. 87:2693-2701.   DOI   ScienceOn
20 Dorneles, C. K. P., P. R. N. Rorato, J. A. Cobuci, J. S. Lopes, T. Weber and H. N. Oliveira. 2009b. Lactation persistency for Holstein cows raised in the State of Rio Grande do Sul using a random regression. Cienc. Rural 39:1485-1491.   DOI
21 Ferreira, W. J., N. M. Teixeira, R. A. Torres, and R. B. Barra. 2006.Estimate of genetic trend for milk production in Holstein in the State of Minas Gerais. Arq. Bras. Med. Vet. Zootec. 58:599-606.   DOI
22 Freitas, L. S., M. A. Silva, R. S. Verneque, B. D. Valente, G. S. Correa, R. F. Ferreira, M. G. C. D. Peixoto, and G. G. Santos. 2010. Evaluation of lactation persistency of Guzerat cows using random regression models. Arq. Bras. Med. Vet. Zootec. 62:401-408.   DOI
23 Kistemaker, G. J. 2003. Comparison of persistency definitions in random regression test day models. In: Proceedings of the Interbull Technical Workshop. 2003 March, 1-3; Beltsville, MD, USA. Interbull Bulletin 30:96-98.
24 Jakobsen, J. H., P. Madsen, J. Jensen, J. Pedersen, L. G. Christensen, and D. A. Sorensen. 2002. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML J. Dairy Sci. 85:1607-1616.   DOI   ScienceOn
25 Jamrozik, J., L. R. Schaeffer, and J. C. M. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. J. Dairy Sci. 80:1217-1226.   DOI   ScienceOn
26 Khorshidie, R., A. A. Shadparvar, N. Ghavi Hossein-Zadeh, and S. Joezy Shakalgurabi. 2012. Genetic trends for 305-day milk yield and persistency in Iranian Holsteins. Livestock Science, 144:211-217.   DOI   ScienceOn
27 Lopez-Romero, P. and M. J. Carabano. 2003. Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest. Prod. Sci. 82:81-96.   DOI   ScienceOn
28 Madsen, O. 1975. A comparison of some suggested measures of persistency of milk yield in dairy cows. Anim. Prod. 20:191-197.   DOI
29 Meyer, K. 2007. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B, 8:815-821.   DOI   ScienceOn
30 Pelicioni, L. C., L. G. Albuquerque, and A. S. Queiroz. 2009. Estimates of covariance components for body weights from birth to 365 days of age in Guzera cattle, using random regression models. Rev. Bras. Zootec. 38:50-60.   DOI