• Title/Summary/Keyword: random number

Search Result 2,022, Processing Time 0.029 seconds

DIAMETERS AND CLIQUE NUMBERS OF QUASI-RANDOM GRAPHS

  • Lee, Tae Keug;Lee, Changwoo
    • Korean Journal of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2003
  • We show that every quasi-random graph $G(n)$ with $n$ vertices and minimum degree $(1+o(1))n/2$ has diameter either 2 or 3 and that every quasi-random graph $G(n)$ with n vertices has a clique number of $o(n)$ with wide spread.

  • PDF

Study on New Security Device of Telephony Using the Pseudo Random Number Generator (의사난수발생기를 이용한 새로운 유선전화 도청방지장치에 관한 연구)

  • Kim, Soon-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.655-657
    • /
    • 2008
  • We suggest the digital voice encryption module using the pseudo random number generator and design the sorority device of a telephone using the module. The proposed method provides encryption method of the telephone against the third party. This encryption method uses pseudo random number generator which computes the encryption key using the shared secret key and the current time value.

  • PDF

Study on New Security Device of Telephony Using the Pseudo Random Number Generator (의사난수발생기를 이용한 새로운 유선전화 도청방지장치에 관한 연구)

  • Kim, Soon-Seok;Lee, Yong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1006-1009
    • /
    • 2008
  • We suggest the digital voice encryption module using the pseudo random number generator and design the security device of a telephone using the module. The proposed method provides encryption method of the telephone against the third party. This encryption method uses pseudo random number generator which computes the encryption key using the shared secret key and the current time value.

PRaCto: Pseudo Random bit generator for Cryptographic application

  • Raza, Saiyma Fatima;Satpute, Vishal R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6161-6176
    • /
    • 2018
  • Pseudorandom numbers are useful in cryptographic operations for using as nonce, initial vector, secret key, etc. Security of the cryptosystem relies on the secret key parameters, so a good pseudorandom number is needed. In this paper, we have proposed a new approach for generation of pseudorandom number. This method uses the three dimensional combinational puzzle Rubik Cube for generation of random numbers. The number of possible combinations of the cube approximates to 43 quintillion. The large possible combination of the cube increases the complexity of brute force attack on the generator. The generator uses cryptographic hash function. Chaotic map is being employed for increasing random behavior. The pseudorandom sequence generated can be used for cryptographic applications. The generated sequences are tested for randomness using NIST Statistical Test Suite and other testing methods. The result of the tests and analysis proves that the generated sequences are random.

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

A Pseudo-Random Number Generator based on Segmentation Technique (세그먼테이션 기법을 이용한 의사 난수 발생기)

  • Jeon, Min-Jung;Kim, Sang-Choon;Lee, Je-Hoon
    • Convergence Security Journal
    • /
    • v.12 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Recently, the research for cryptographic algorithm, in particular, a stream cipher has been actively conducted for wireless devices as growing use of wireless devices such as smartphone and tablet. LFSR based random number generator is widely used in stream cipher since it has simple architecture and it operates very fast. However, the conventional multi-LFSR RNG (random number generator) suffers from its hardware complexity as well as very closed correlation between the numbers generated. A leap-ahead LFSR was presented to solve these problems. However, it has another disadvantage that the maximum period of the generated random numbers are significantly decreased according to the relationship between the number of the stages of the LFSR and the number of the output bits of the RNG. This paper presents new leap-ahead LFSR architecture to prevent this decrease in the maximum period by applying segmentation technique to the conventional leap-ahead LFSR. The proposed architecture is implemented using VHDL and it is simulated in FPGA using Xilinx ISE 10.1, with a device Virtex 4, XC4VLX15. From the simulation results, the proposed architecture has only 20% hardware complexity but it can increases the maximum period of the generated random numbers by 40% compared to the conventional Leap-ahead archtecture.

On desirable conditions for a random number used in the random sampling method

  • Harada, Hiroshi;Kashiwagi, Hiroshi;Takada, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1295-1299
    • /
    • 1990
  • A new method called random sampling method has been proposed for generation of binary random sequences. In this paper, a new concept, called merit factor Fn, is proposed for evaluating the randomness of the binary random sequences generated by the random sampling method. Using this merit factor Fn, some desirable conditions are investigated for uniform random numbers used in the random sampling method.

  • PDF

Blockchain Oracle for Random Number Generator using Irregular Big Data (비정형 빅데이터를 이용한 난수생성용 블록체인 오라클)

  • Jung, Seung Wook
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • Blockchain 2.0 supports programmable smart contract for the various distributed application. However, the environment of running smart contract is limited in the blockchain, so the smart contract only get the deterministic information, such as block height, block hash, and so on. Therefore, some applications, which requires random information, such as lottery or batting, should use oracle service that supply the information outside of blockchain. This paper develops a random number generator oracle service. The random number generator oracle service use irregular big data as entropy source. This paper tests the randomness of bits sequence generated from oracle service using NIST SP800-22. This paper also describes the advantages of irregular big data in our model in perspective of cost comparing hardware entropy source.

New Randomness Testing Methods using Approximate Periods (근사 주기를 이용한 새로운 랜덤성 테스트 기법)

  • Lim, Ji-Hyuk;Lee, Sun-Ho;Kim, Dong-Kyue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.742-746
    • /
    • 2010
  • In this paper, we propose new randomness testing methods based on approximate periods in order to improve the previous randomness testing method using exact pattern matching. Finding approximate periods of random sequences enables us to search similarly repeated parts, but it has disadvantages since it takes long time. In this paper we propose randomness testing methods whose time complexity is O($n^2$) by reducing the time complexity of computing approximate periods from O($n^3$) to O($n^2$). Moreover, we perform some experiments to compare pseudo random number generated by AES cryptographic algorithms and true random number.

Optimal MIFARE Classic Attack Flow on Actual Environment (실제 환경에 최적화된 MIFARE Classic 공격 절차)

  • Ahn, Hyunjin;Lee, Yerim;Lee, Su-Jin;Han, Dong-Guk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2240-2250
    • /
    • 2016
  • MIFARE Classic is the most popular contactless smart card, which is primarily used in the management of access control and public transport payment systems. It has several security features such as the proprietary stream cipher Crypto 1, a challenge-response mutual authentication protocol, and a random number generator. Unfortunately, multiple studies have reported structural flaws in its security features. Furthermore, various attack methods that target genuine MIFARE Classic cards or readers have been proposed to crack the card. From a practical perspective, these attacks can be partitioned according to the attacker's ability. However, this measure is insufficient to determine the optimal attack flow due to the refined random number generator. Most card-only attack methods assume a predicted or fixed random number, whereas several commercial cards use unpredictable and unfixable random numbers. In this paper, we propose optimal MIFARE Classic attack procedures with regards to the type of random number generator, as well as an adversary's ability. In addition, we show actual attack results from our portable experimental setup, which is comprised of a commercially developed attack device, a smartphone, and our own application retrieving secret data and sector key.