• Title/Summary/Keyword: random loading

Search Result 223, Processing Time 0.029 seconds

Stress Analysis of Top Hat Type Structure for Random Loading

  • Jhung, Myung-Jo;Hwang, Jong-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.223-228
    • /
    • 1996
  • To resolve several arguments raised for the current analysis of a structure like top hat, which is composed of flange, cylinder and plate, the dynamic response analysis is performed for the full and half models. The dynamic characteristics are investigated for full and half models and the results are compared between them. The responses such as bolt reactions and stresses due to random loading are also obtained using the analysis capabilities between commercial programs which have the routine for the random vibration analysis. Several general purpose structural analysis programs are used to get the response due to the random loadings. Also the application of the random loading and the effect of correlations are studied and the general directions for the generation of design load due to random loading are suggested.

  • PDF

The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading (랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측)

  • Kim, Jeong-Gyu;Sim, Dong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

Probabilistic Fatigue Crack Growth Analysis under Random Loading (불규칙 하중하의 확률론적 피로균열 성장 해석)

  • Song, Sam-Hong;Chang, Doo-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.192-200
    • /
    • 1994
  • The methodology of a simple probabilistic fatigue crack under random loading is proposed. Using the crack closure concept, the crack opening stress is assumed to be constant during random loading. The loading history was analyzed to determine the probability density functions, probability distribution functions and other related parameters for the probabilistic fatigue crack growth analysis. Fatigue crack growth using the exisiting available data was predicted by the proposed probabilistic analysis and compared with experimental data.

  • PDF

Fatigue Test Method for RC Beam Under Random Loading (랜덤하중에 의한 RC보의 피로시험법에 관한 연구)

  • 권혁문;사림신장;정상정일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.179-183
    • /
    • 1993
  • Loads acting on concrete structures are completely random in nature with respect to frequency, magnitude and order of loading, and are essentially distinct from the loads in two-stage and variable load fatigue test. Thus, this study proposes the fatigue test method generating random loads based on the analyzed result.

  • PDF

불규칙 하중하의 확률론적 피로 해석의 신뢰성 평가

  • 송삼홍;장두수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.365-369
    • /
    • 1993
  • The reliability assessment of a simple porbabilistic fatigue analysis under random loading is proposed. Using the crack closure concept, the crack opening stress is assumed to be constant during random loading. The available loading history and test data are used for the comparison with the results of the reliability assessment of probabilistic fatigue analysis.

Experiment study of structural random loading identification by the inverse pseudo excitation method

  • Guo, Xing-Lin;Li, Dong-Sheng
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.791-806
    • /
    • 2004
  • The inverse pseudo excitation method is used in the identification of random loadings. For structures subjected to stationary random excitations, the power spectral density matrices of such loadings are identified experimentally. The identification is based on the measured acceleration responses and the structural frequency response functions. Numerical simulation is used in the optimal selection of sensor locations. The proposed method has been successfully applied to the loading identification experiments of three structural models, two uniform steel cantilever beams and a four-story plastic glass frame, subjected to uncorrelated or partially correlated random excitations. The identified loadings agree quite well with actual excitations. It is proved that the proposed method is quite accurate and efficient in addition to its ability to alleviate the ill conditioning of the structural frequency response functions.

Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading (변동하중하에서 고강도 알루미늄 합금의 피로수명 예측)

  • Sim, Dong-Seok;Kim, Gang-Beom;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

A Study on the Effect of Overloading on Fatigue Life (과대하중이 피로수명에 미치는 영향에 관한 연구)

  • 김경수;신병천;심천식;박진영;조형민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Ships and ocean structures are subjected to random loads caused by irregular waves. The irregularity of amplitude from random loading affects on fatigue crack growth and fatigue life. However the effects of irregularity of loading on fatigue including random loading have not been explained exactly. Therefore in this paper crack growth tests on DENT specimens under constant-amplitude loading including a single tensile overload are conducted to investigate the effect of overload on crack growth rate. The size of plastic zone and crack growth rate before and after a single tensile overloading are measured using ESPI system. Crack growth retardation model that is characterized by crack growth length and the size of plastic zone was proposed and compared with test result. From the research, the validity of proposed model is examined on crack growth retardation, and consequently fatigue life.

Analysis of Spectral Fatigue Damage of Linear Elastic Systems with Different High Cyclic Loading Cases using Energy Isocline (에너지 등고선을 이용한 고주파 가진 조건들에 따른 선형 시스템의 피로 손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.840-845
    • /
    • 2014
  • Vibration profiles consist of two kinds of pattern, random and harmonic, at general engineering problems and the detailed vibration test mode of a target system is decided by the spectral condition that is exposed under operation. In moving mobility, random responses come generally from road source; whereas the harmonic responses are triggered from rotating machinery parts, such as combustion engine or drive shaft. Different spectral input may accumulate different damage in frequency domain since the accumulated fatigue damage dependent on the pattern of input spectrum in high cyclic loading condition. To evaluate the sensitivity of spectral damage according to different loading conditions, a linear elastic system is introduced to conduct a uniaxial vibration testing. Measured data, acceleration and strain, is analyzed using energy isocline function and then, the calculated fatigue damage is compared by different loading cases, random and harmonic.

Reliability Engineering Approach to Fatigue Crack Growth Rate Under Random Loading Using DC Eletrical Potential Method (직류전위차법을 이용한 랜덤하중하의 피로균열 진전율에 대한 신뢰성 공학적 연구)

  • Bae, Sung-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.473-480
    • /
    • 1996
  • Automatic fatigue crack length measuring system using DC electrical potential method and the system control program for automatic fatigue testing under random load condition were made in this study. And using these system and control program, fatigue tests were executed under constant and random load condition. As the result, the propagation of crack in random loading can be represented Paris equaiton and log normal probability function. But constant and random load test show different crack propagation properties.