• 제목/요약/키워드: random dynamical systems

검색결과 33건 처리시간 0.025초

DYNAMICS OF RANDOM DYNAMICAL SYSTEMS

  • Enkhbayar Azjargal;Zorigt Choinkhor;Nyamdavaa Tsegmid
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1131-1139
    • /
    • 2023
  • In this paper, we introduce the concept of ω-expansive of random map on compact metric spaces 𝓟. Also we introduce the definitions of positively, negatively shadowing property and shadowing property for two-sided RDS. Then we show that if 𝜑 is ω-expansive and has the shadowing property for ω, then 𝜑 is topologically stable for ω.

INVARIANT GRAPH AND RANDOM BONY ATTRACTORS

  • Fateme Helen Ghane;Maryam Rabiee;Marzie Zaj
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.255-271
    • /
    • 2023
  • In this paper, we deal with random attractors for dynamical systems forced by a deterministic noise. These kind of systems are modeled as skew products where the dynamics of the forcing process are described by the base transformation. Here, we consider skew products over the Bernoulli shift with the unit interval fiber. We study the geometric structure of maximal attractors, the orbit stability and stability of mixing of these skew products under random perturbations of the fiber maps. We show that there exists an open set U in the space of such skew products so that any skew product belonging to this set admits an attractor which is either a continuous invariant graph or a bony graph attractor. These skew products have negative fiber Lyapunov exponents and their fiber maps are non-uniformly contracting, hence the non-uniform contraction rates are measured by Lyapnnov exponents. Furthermore, each skew product of U admits an invariant ergodic measure whose support is contained in that attractor. Additionally, we show that the invariant measure for the perturbed system is continuous in the Hutchinson metric.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

A DEVANEY-CHAOTIC MAP WITH POSITIVE ENTROPY ON A SYMBOLIC SPACE

  • Ramesh, Shankar Bangalore;Vasu, Chetana Urva
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.967-979
    • /
    • 2019
  • Chaotic dynamical systems, preferably on a Cantor-like space with some arithmetic operations are considered as good pseudo-random number generators. There are many definitions of chaos, of which Devaney-chaos and pos itive topological entropy seem to be the strongest. Let $A=\{0,1,{\dots},p-1\}$. We define a continuous map on $A^{\mathbb{Z}}$ using addition with a carry, in combination with the shift map. We show that this map gives rise to a dynamical system with positive entropy, which is also Devaney-chaotic: i.e., it is transitive, sensitive and has a dense set of periodic points.

A stochastic optimal time-delay control for nonlinear structural systems

  • Ying, Z.G.;Zhu, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.621-624
    • /
    • 2009
  • The time delay in active and semi-active controls is an important research subject. Many researches on the time-delay control for deterministic systems have been made (Hu and Wang 2002, Yang et al. 1990, Abdel-Mooty and Roorda 1991, Pu 1998, Cai and Huang 2002), while the study on that for stochastic systems is very limited. The effects of the time delay on the control of nonlinear systems under Gaussian white noise excitations have been studied by Bilello et al. (2002). The controlled linear systems with deterministic and random time delay subjected to Gaussian white noise excitations have been treated by Grigoriu (1997). Recently, a stochastic averaging method for quasi-integrable Hamiltonian systems with time delay has been proposed (Liu and Zhu 2007). In the present paper, a stochastic optimal time-delay control method for stochastically excited nonlinear structural systems is proposed based on the stochastic averaging method for quasi Hamiltonian systems with time delay and the stochastic dynamical programming principle. An example of stochastically excited and controlled hysteretic column is given to illustrate the proposed control method.

Random dynamic analysis for simplified vehicle model based on explicit time-domain method

  • Huan Huang;Yuyu Li;Wenxiong Li;Guihe Tang
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.1-20
    • /
    • 2023
  • On the basis of the explicit time-domain method, an investigation is performed on the influence of the rotational stiffness and rotational damping of the vehicle body and front-rear bogies on the dynamic responses of the vehicle-bridge coupled systems. The equation of motion for the vehicle subsystem is derived employing rigid dynamical theories without considering the rotational stiffness and rotational damping of the vehicle body, as well as the front-rear bogies. The explicit expressions for the dynamic responses of the vehicle and bridge subsystems to contact forces are generated utilizing the explicit time-domain method. Due to the compact wheel-rail model, which reflects the compatibility requirement of the two subsystems, the explicit expression of the evolutionary statistical moment for the contact forces may be performed with relative ease. Then, the evolutionary statistical moments for the respective responses of the two subsystems can be determined. The numerical results indicate that the simplification of vehicle model has little effect on the responses of the bridge subsystem and the vehicle body, except for the responses of the rotational degrees of freedom for the vehicle subsystem, regardless of whether deterministic or random analyses are performed.

리미트사이클을 발생하는 연속시간 모델 순환결합형 신경회로망에서 카오스 신호의 영향 (Analysis of Dynamical State Transition and Effects of Chaotic Signal in Continuous-Time Cyclic Neural Network)

  • 박철영
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.396-401
    • /
    • 2006
  • 순환결합형 신경회로망은 복수 개의 리미트사이클을 생성하며 따라서, 많은 동적 정보를 저장할 수 있는 메모리 시스템으로 사용할 수 있다는 것이 알려져 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화한 결합하중 ${\pm}1$로 연결된 연속 시간모델 순환결합형 신경회로망을 구현하였다. 그리고 이런 회로망을 통해 생성되는 리미트사이클의 수와 패턴을 시뮬레이션을 통하여 나타내었다. 또한 카오스 신호를 인가하여 리미트사이클 사이의 천이 가능성을 입증하였다. 특히, 카오스 신호 이외의 랜덤 노이즈를 이용한 해석을 통하여 동적 신경회로망에 카오스 노이즈를 인가하는 경우의 유효성을 검토하였다.

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

Potts Automata를 이용한 영상의 잡음 제거 및 에지 주줄 (A Potts Automata algorithm for Noise Removal and Edge Detection)

  • 이석기;김석태;조성진
    • 한국통신학회논문지
    • /
    • 제28권3C호
    • /
    • pp.327-335
    • /
    • 2003
  • Cellular Automata는 자연계의 현상 현상이 국부적인 관계에 의해 완전히 표현될 수 있는 이상적인 동적 시스템이다. 본 논문에서는 Cellular Automata의 특성을 가지는 Potts Automata를 이용한 잡음 제거 및 에지 추출 알고리즘을 제안한다. 본 방법은 대상영상에 대한 특징을 그대로 보존하면서 천이규칙에 따라 국부적으로 밝기값의 차이를 증가 및 감소시킨다. 이러한 Automata는 순차적이고 병렬적인 움직임을 가지고 Lyapunov 함수를 만족한다. 제안한 천이규칙은 랜덤잡음을 가진 대상영상에 대해 빠른 수련속도를 가지고 안정적인 결과를 나타낸다. 실험을 통해 본 방법의 유효성을 확인한다.

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF