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INVARIANT GRAPH AND RANDOM BONY ATTRACTORS

Fateme Helen Ghane, Maryam Rabiee, and Marzie Zaj

Abstract. In this paper, we deal with random attractors for dynami-

cal systems forced by a deterministic noise. These kind of systems are

modeled as skew products where the dynamics of the forcing process are
described by the base transformation. Here, we consider skew products

over the Bernoulli shift with the unit interval fiber. We study the geo-
metric structure of maximal attractors, the orbit stability and stability of

mixing of these skew products under random perturbations of the fiber

maps. We show that there exists an open set U in the space of such skew
products so that any skew product belonging to this set admits an attrac-

tor which is either a continuous invariant graph or a bony graph attractor.

These skew products have negative fiber Lyapunov exponents and their
fiber maps are non-uniformly contracting, hence the non-uniform con-

traction rates are measured by Lyapnnov exponents. Furthermore, each

skew product of U admits an invariant ergodic measure whose support
is contained in that attractor. Additionally, we show that the invariant

measure for the perturbed system is continuous in the Hutchinson metric.

1. Introduction

The qualitative study of dynamical systems is concerned with the study of
attractors. Knowledge of the attractors may indicate the long time behavior
of the orbits. In the most simple cases, an attractor of a dynamical system is a
union of finite set of smooth manifolds. There are interesting examples of locally
dynamical systems having more complicated attractors. For example in [25],
Kudryashov introduced a new type of attractors so-called bony attractors, then
he presented an open set in the space of step skew products over the Bernoulli
shift such that any of them had a bony attractor. Following [25], an attractor
A of a skew product is bony if A is the union of the graph of a continuous
function on some subset of the base and an uncountable set of vertical closed
intervals (bones) contained in the closure of the graph. This feature is similar
to porcupine horseshoes discovered by Diaz and Gelfert in [11]. Indeed, from
a topological point of view, a porcupine is a transitive set that looks like a
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horseshoe with infinitely many spines attached at various levels and in a dense
way.

The objective of this article is to extend aforementioned result from [25] to
the random case, where the skew products are general (not necessarily step).
One novelty here is that, in our context, in contrast the Kudryashov’ case, fiber
maps are non-uniformly contracting, therefore the contraction rates are non-
uniform and hence measured by Lyapunov exponents. For skew-products with
monotone interval fiber maps there is a close relation between (the existence of)
invariant graphs, (fiber) Lyapunov exponents and ergodic measures (e.g. [14,
21–23,35] etc.). For instance, the stability of an invariant graph is determined
by its Lyapunov exponent, if it is negative, then the graph is attracting. In
this literature, there are attracting invariant graphs with more complicated
dynamics. This includes bony graph attractors which are currently object
of intense study [23, 25, 27, 35]. We will discuss maximal attractors of this
kind of skew products and show that they are either a continuous invariant
graph or a bony attractor. This research also presents related results on the
ergodic properties of attracting graphs and stability results for such graphs
under deterministic perturbations.

Notice that, in general, dynamical systems under the external forcing are
modeled, in discrete time, as skew products,

(1) F : Ω×M → Ω×M, F (ω, x) = (θω, fω(x)),

where the dynamics of the forcing process are described by the base trans-
formation θ which is assumed to be a measure-preserving transformation of a
probability space (Ω,F ,P) (random forcing). An invariant graph of F is the
graph of a measurable function γ : Ω → M which satisfies fω(γ(ω)) = γ(θ(ω))
for P-almost all ω ∈ Ω.

In the study of forced dynamical systems of the above form, invariant graphs
play a central role since they are the natural substitutes of a stable fixed point
to the case of forced systems. Furthermore, the existence of such invariant
graphs considerably simplifies the dynamics of the forced systems. Moreover,
Lyapunov exponents yield additional information about the stability and at-
tractivity of invariant graphs. Attracting invariant graphs have a wide variety of
applications in many branches of nonlinear dynamics (e.g. [9,10,18,19,26,29,31]
etc.). A context in which the attractivity of invariant graphs plays a central
role is generalised synchronisation, a phenomenon that has been widely studied
in theoretical physics. In [28] Stark provides the conditions for the existence
and regularity of invariant graphs and discusses a number of applications. His
results include some generalizations to the case of non-uniform contraction. We
mention that in skew product systems with uniformly contracting fiber maps,
there exist continuous invariant attracting sets for the overall dynamics, see
[16], Theorem 6.1a, [17]. Results in the non-uniform case, when the fiber map
possesses negative Lyapunov exponents in the fibre [3, 12, 13, 34, 35], are very
recent and invariant graphs are very sensitive to perturbations.
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However, this research extends the Kudryashov results obtained in [25], but
our approach is completely different and it is based on the fiber Lyapunov
exponents. In the following, some differences of our results and approach are
highlighted.

(i) In [25], Kudryashov constructed a typical example, only in the class
of step skew products, of a dynamical system having a bony attractor.
However, in our setting, the skew products are general (not necessarily
step) and thus our results cover a larger family of skew product systems.

(ii) Our dynamics beyond the uniform hyperbolicity, we consider skew
products where the fiber maps fail to be uniformly hyperbolic. In
our construction, the weak contraction maps are employed and the
uniformly contracting condition of the fiber dynamic is replaced by
a non-uniform contraction condition. In particular, the non-uniform
contraction rates are measured by Lyapnnov exponents.

(iii) In contrast to the Kudryashov work, in this research, some ergodic
properties are also investigated. We show that our systems preserve the
mixing properties including ergodicity, strong mixing and Bernoulli-
ness under deterministic perturbation. Additionally, the continuity of
invariant measures is demonstrated.

This work is organized as follows: In Subsections 1.1, 1.2, 1.3 and 1.4, we
recall some standard definitions. Then we state our main result in Subsection
1.5. The proof of our main result, Theorem 1.11 below, is given in Section 2.

1.1. Preliminaries

Assume that X is a metric measure space. Denote by int(D) and Cl(D),
respectively, the interior and the closure of any set D.

Definition 1.1. Let (X, d) be a metric space and consider the space

Lip1(X) = {f : X → R : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ X}.

Let M(X) be the set of the Borel probability measures µ such that µ(f) :=∫
X
fdµ < ∞ for each f ∈ Lip1(X). Then, we define the Hutchinson metric on

the set M(X) by

(2) dH(ν, µ) = sup{|
∫
X

fdν −
∫
X

fdµ : f ∈ Lip1(X)|}.

It is known that dH is a metric [5], moreover, the space M(X) is complete
in the metric dH if and only if X is complete (see [24, Theorem 4.2]). In [24,
Theorem 3.1], the author proved that for every metric space X, the topology
T on M(X) generated by dH(ν, µ) coincides with the topology W of weak
convergence if and only if diam(X) < ∞.

The concept of a weak contraction map was introduced in 1997 by Alber
and Guerre-Delabriere [1].
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Definition 1.2. We say that a continuous map f is a weak contraction [4]
whenever for each x, y ∈ X with x ̸= y, d(f(x), f(y)) < d(x, y). It is a well-
known fact [20, Corollary 3] (see also [4]) that if f is a weak contraction and
X is compact, then there exists a unique fixed point x ∈ X of the map f .
Furthermore, for every y ∈ X, limk→∞ fk(y) = x uniformly. Then we say that
x is a weak attracting fixed point. Clearly if f is a weak contraction map, then

d(fn(y), fn(z)) → 0 as n → ∞
for each y, z ∈ X.

In what follows, some concepts of ergodic theory are given.

Definition 1.3. Let (X;B;µ; f) be a measure preserving dynamical system. If
f is invertible then, based on [7,32], the system is Bernoulli if it is isomorphic
to a Bernoulli shift.

Clearly invertible systems cannot be isomorphic to non-invertible systems.
But there is a construction to make a non-invertible system invertible, namely
by passing to the natural extension.

Definition 1.4. If f is non-invertible, being Bernoulli means that the natural
extension of f is isomorphic to a Bernoulli shift.

Definition 1.5. The map f is mixing (or strong mixing) if

µ(f−n(A) ∩B) → µ(A)µ(B) as n → +∞
for every A,B ∈ B.

Every mixing system [32] is necessarily ergodic.

1.2. Random maps and skew products

A random map with base (Ω,F ,P, θ), in the sense of Arnold [2], is a skew
product of the form (1), where (Ω,F ,P) is a probability space, θ : Ω → Ω is a
bi-measurable and ergodic measure-preserving bijection and M is a measurable
space. If M is a smooth manifold and all fibre maps fω are Cr, we call F a
random Cr-map.

Take Σ+
k = {0, . . . , k−1}N and Σk = {0, . . . , k−1}Z endowed with the prod-

uct topology and equip them with the Bernoulli measures ν+ and ν, respec-
tively, corresponding to some distribution of probabilities p0, . . . , pk−1, which
gives us the probability with which we apply fi. Here, assume that the proba-
bilities pi, i = 0, . . . , k−1, are the same and equal to 1/k. Let σ : Σk → Σk and
σ+ : Σ+

k → Σ+
k denote the one-sided and two-sided left shift. It is well known

that [33] σ+ and σ are ergodic transformations preserving the probabilities ν+

and ν, respectively.
Let M be a compact smooth manifold. Here, we consider skew products of

the form

(3) F : Σk ×M → Σk ×M ; (ω, x) → (σω, fw(x))
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which is called a skew product over the Bernoulli shift, where ω ∈ Σk, x ∈ M
and the maps fω are Cr diffeomorphisms on M . The space Σk is called the
base, the space M is called the fiber, and the maps fω are called the fiber maps.
Thus each skew product of the form (3) is a random Cr-map.

A skew product over the Bernoulli shift is a step skew product if the fiber
maps fω depend only on the digit ω0 and not on the whole sequence ω. We
emphasise, in contrast to step skew products, the fiber maps of (general) skew
products of the form (3) depend on the whole sequence ω. When treating a
step skew product for one sided time N, this results in the skew product system
F+ on Σ+

k ×M :

(4) F+ : Σ+
k ×M → Σ+

k ×M ; (ω, x) → (σ+ω, fw0
(x)).

We denote iterates of a skew product system F of the form (3) as Fn(ω, x) =
(σn(ω), fn

ω (x)). Here, for n ≥ 1

fn
ω (x) := fσn−1ω ◦ · · · ◦ fω(x).

For a step skew product system this becomes

fn
ω (x) := fωn−1 ◦ · · · ◦ fω0(x),

where ω = (. . . , ω−1, ω0, ω1, . . . , ωn, . . .) ∈ Σk.
In the rest of this article we assume that the fiber M is always the unit

interval I.

Definition 1.6. Denote by C(I) the space of all random C2-maps (general
skew products) acting on Σk×I defined by C2 interval diffeomorphisms, where
C(I) is equipped with the following metric:

(5) distC2(F,G) := sup
ω∈Σk

(distC2(f±1
ω , g±1

ω )) for each F,G ∈ C(I),

where fω and gω are the fiber maps of F and G, respectively.

1.3. Invariant graphs

Invariant graphs are fundamental objects in the study of skew product sys-
tems, and they are of major interest.

In the sequel, we will denote by π1 : Σk × I → Σk and π2 : Σk × I → I the
canonical projections onto the first and second coordinates, respectively.

Definition 1.7 (Invariant graph). Let F ∈ C(I) be a skew product. A mea-
surable function γ : Σk → I is called an invariant graph (with respect to F ) if
for all ω ∈ Σk:

F (ω, γ(ω)) = (σω, γ(σω)), equivalently fω(γ(ω)) = γ(σω).

The point set Γ := {(ω, γ(ω)) : ω ∈ Σk} will be called an invariant graph as
well, but it is labeled with the corresponding capital letter. Denote by Cl(Γ)
the closure of Γ in Σk × I.
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Formally, we introduce the following definition. Note that the effect of the
attraction is observed only in the fibre space I.

Definition 1.8 (Attracting invariant graphs). A point (ω, x) ∈ Σk × I is
attracting, if there is a constant δ > 0 such that

lim
n→∞

|fn
ω (x)− fn

ω (z)| = 0

for all z ∈ (x−δ, x+δ). Furthermore, an invariant graph γ is called an attracting
invariant graph or attractor with respect to the invariant probability µ if µ-
almost every point is attracting.

We recall some definitions related to attractors.

Definition 1.9 (Maximal attractor). Let F : Σk × I → Σk × I be a homeo-
morphism onto its image, but suppose its image is contained strictly in Σk × I.
The (global) maximal attractor of F is defined as:

Amax(F ) :=

∞⋂
n=0

Fn(Σk × I).

Definition 1.10 (Bony graph attractor). Following [25], an attractor Λ of a
skew product F is a bony graph attractor if Λ is the union of the graph of a
continuous function γ defined on some set of full measure of the base and a set
of vertical closed intervals (“bones”) contained in the closure of the graph.

1.4. Fiber Lyapunov exponents

For each Lipschitz map f : I → I we define the norm ∥ · ∥ by

∥f∥ := sup
x ̸=x′

|f(x)− f(x′)|
|x− x′|

.

It is easily seen that, whenever f is C1, by mean value theorem for real-valued
functions,

∥f∥ = sup{∥Df(x)∥ : x ∈ I}.
For the skew product F (ω, x) = (σω, f(ω, x)) = (σω, fω(x)), consider a se-
quence of functions φn defined by φn(ω) = ∥fn(ω, ·)∥. It is simply verified
that the family of functions {an} defined by an(ω) = log(φn(ω)) is subaddi-
tive. Let log+(φ1) ∈ L1(ν), then, by Kingman’s subadditive theorem [32, The-
orem 3.3.3], the limit

(6) λ(ω) := lim
n→∞

1

n
log ∥fn(ω, ·)∥

exists at ν-almost every point. Moreover, the function λ ∈ L1(ν) and

(7) lim
n→∞

1

n
log ∥fn(ω, ·)∥ = inf

n

1

n
log ∥fn(ω, ·)∥.

By ergodicity of ν, the limit (6) is constant, denoted by λ. The constant λ is
called the fiber Lyapunov exponent with respect to ν.
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1.5. Main results

In this article, we will show that maximal attractors of a certain class of
general skew products (random maps) are either a continuous invariant graph
or a bony attractor. Our novelty here is that the fiber maps of such systems
depend on the whole sequence ω and hence they are not necessarily step skew
products. Moreover, the fiber contraction rates are non-uniform and hence
measured by Lyapunov exponents, in addition, the attractors carry an ergodic
measure. Our result thus extends work by Kudryashov in [25] who treated step
skew products over the Bernoulli shift having bony attractors.

Theorem 1.11. There exists an open nonempty set U in the space C2 random
maps C(I) given by (5) such that any system G belonging to this set has a
maximal attractor Amax(G) satisfies the following properties:

(1) the maximal attractor Amax(G) is either a continuous invariant graph
or a bony graph attractor;

(2) there exists an invariant ergodic measure µG whose support is the clo-
sure of the graph ΓG, in particular, (G,ΓG, µG) is Bernoulli and there-
fore it is mixing, additionally, the invariant measure for the perturbed
system is continuous in the Hutchinson metric;

(3) the fiber Lyapunov exponent of G is negative.

Furthermore, the set of random maps of U which admit a bony graph attractor
is nonempty.

2. Proof of Theorem 1.11

This section is devoted to proving the main result of this paper, Theorem
1.11.

2.1. Weakly attracting pair

Here, using a tool, the so-called a weakly attractive pair, we get bony graph
attractors.

Definition 2.1. A finite collection F = {f1, f2, . . . , fk} of continuous maps
fi : I → I satisfies the covering property with respect to an open interval
B ⊂ int(I) if

Cl(B) ⊂ f1(B) ∪ · · · ∪ fk(B).

Definition 2.2. Consider a finite family of strictly increasing C2-diffeomorph-
isms {f0, . . . , fk−1} defined on I for which the following conditions hold:

(H1) The mappings fi, i = 0, . . . , k−1, bring the unit interval I strictly into
itself and they are C2 close to the identity.

(H2) f0 is a weak contraction with a unique weak attracting fixed point p0,
i.e., Df0(p0) = 1.

(H3) For i ≥ 1, the map fi is uniformly contracting. In particular, fi has a
unique fixed point denoted by pi.
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(H4) The following contraction on average property holds:

∀x ∈ I,

k−1∏
i=0

Dfi(x) < 1.

(H5) The fixed points pi, i = 0, . . . , k−1, are pairwise disjoint, pi ̸= 0, 1 and
satisfy the no-cycle condition, i.e., fi(pj) ̸= pk for each distinct indices
i, j and k.

(H6) Let p0 < p1 < · · · < pk−1, J = [p0, p1], and there exist the points x0

and x1 such that p0 < x0 < x1 < p1 and the interval B = (x0, x1)
satisfies the following covering property:

Cl(B) ⊂ f0(B) ∪ f1(B).

In particular, ∀x ∈ [x0, x1], ∥Dfi(x)∥ < 1.

Then, we say that (B,F) is a weakly attracting pair.

2.2. Skew products with negative fiber Lyapunov exponents

Using a weakly attractive pair, we now construct skew products having
nonuniformly contraction rates along the fibers. Consider a weakly attractive
pair (B,F) and write the step skew product

(8) F : Σk × I → Σk × I; (ω, x) → (σω, fw0(x))

whose fiber maps are the mappings fi, i = 0, . . . , k−1, which satisfy conditions
(H1)-(H6). Fix the skew product F and take a small open ball U around F in
the space C(I). To prove Theorem 1.11, we show that any system G belonging
to this set satisfies the conclusion of the theorem.

Definition 2.3. We define the transfer operator T : M(I) → M(I) by the
formula,

T (µ)(A) :=
1

k

k∑
i=1

µ(f−1
i (A))

for any Borel subset A and for each measure µ ∈ M(I), where M(I) is the
space of all Borel probability measures on I. If a measure µ ∈ M(I) is a fixed
point of the transfer operator we say that µ is a stationary measure.

Remark 2.4. The following two facts hold:

(1) The contraction on average condition given by (H4) ensuring [30] the
existence of a unique attractive stationary probability measure m in
the sense that Tnµ converges weakly to m, for any probability measure
µ ∈ M(I).

(2) For the skew product F+ of the form (4) with the fiber maps fi,
i = 0, . . . , k − 1, the product measure ν+ × m is an ergodic invari-
ant measure. The skew product F given by (8) is the natural extension
of F+. Invariant measures for F+ with marginal ν+ and invariant mea-
sures for F with marginal ν are in one to one relationship, as detailed
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in [2]. A stationary measure m thus, through the invariant measure
ν+ ×m for F+, gives rise to an invariant measure µ for F , with mar-
ginal ν.

We recall the concept of fiber Lyapunov exponent from Subsection 1.5. By
definition of the mappings fi, i = 0, . . . , k − 1, and the functions φn, one has
that log+(φ1) ∈ L1(ν), hence the limit

λ(ω) := lim
n→∞

1

n
log ∥fn(ω, ·)∥

exists at ν-almost every point and, by ergodicity of ν, it is constant. The
contraction on average property given by condition (H4) ensures that λ is
negative.

Lemma 2.5. There exists an open subset U ⊂ C(I) containing F such that any
skew product G belonging to this set admits a negative fiber Lyapunov exponent
with respect to ν.

Proof. Take small neighborhoods Ui ⊂ Diff2(I) of the fiber maps fi, i =
0, . . . , k − 1, of F and let U ⊂ C(I) be a small open neighborhood of F having
the following property: there exists a constant C > 0 such that for any G ∈ U
with G(ω, x) = (σω, g(ω, x)) = (σω, gω(x)) one has that

(9)
∀ω ∈ Σk, the map gω ∈ Uω0

, and

distC2(gω, gω′) < Cd(ω, ω′) for any ω, ω′ ∈ Σk.

Then, by this fact and (7), for given a sufficiently small ε > 0 there exists δ > 0
such that if diam(Ui) < δ, then

(10) lim
n→∞

1

n
log∥gn(ω, .)∥ = λ+ ε < 0 for ν a.e. ω ∈ Σk.

In particular, G possesses a negative fiber Lyapunov exponent. □

2.3. Maximal attractors and invariant graphs

Here, using the Stark’s results [28], we show the existence of attracting
invariant graphs for skew products G ∈ U given by Lemma 2.5.

For the step skew product F given by (8) and any general skew product
G ∈ U , consider the maximal attractors Amax(F ) and Amax(G), respectively,
defined by

Amax(F ) :=
⋂
n≥0

Fn(Σk × I), Amax(G) :=
⋂
n≥0

Gn(Σk × I).

A first main step in the proof of Theorem 1.11 is to show that the attractor is
an invariant graph. For that, we get the next proposition which is an analogue
of [8, Theorem 5], [28, Theorem 1.4] and [6, Proposition 2.3] to our setting.

Proposition 2.6. Consider the skew product F given by (8). For each gen-
eral skew product G ∈ U , given by Lemma 2.5, there exists a measurable
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function γG : Ω ⊆ Σk → I with ν(Ω) = 1 such that ΓG the graph of γG
is invariant under G. The closure of the graph ΓG is the support of an in-
variant ergodic measure µG, in particular, (G,ΓG, µG) is Bernoulli and hence
it is mixing. Furthermore, ΓG is attracting in the sense that for ω ∈ Ω,
limn→∞ |π2(G

n(ω, x))− γG(σ
nω)| = 0 for every x ∈ I, where π2 is the natural

projection from Σk × I to I.

Proof. By Lemma 2.5, each G ∈ U has negative m-fiber Lyapunov exponent.
By (10), given ε > 0 there exists a measurable function C : Σk → R+ such that
for ν a.e. ω ∈ Σk, we have

∥gn(ω, .)∥ < C(ω)e(λ+ε)n for all n > 0.

Since the Bernoulli shift σ is ergodic and invertible hence σ−1 is ergodic with
respect to ν and has the same spectrum of Lyapunov exponents by Furstenberg-
Kesten Theorem [15]. Thus if we define

hn(ω, x) := gn(σ−nω, x),

then by (10)

lim
n→∞

1

n
log∥hn(ω, ·)∥ = λ+ ε < 0 for ν a.e. ω ∈ Σk.

Hence there exists ℓ(ω) such that

∥hn(ω, ·)∥ < en(λ+ε) ∀n ≥ ℓ(ω).

Thus given ε > 0 there exists a measurable function C : Σk → R+ such that
for ν a.e. ω ∈ Σk, we have

∥hn(ω, ·)∥ < C(ω)e(λ+ε)n for all n > 0.

Applying the approach used in the proof of [6, Proposition 2.3], we conclude
that the sequence {hℓ(ω, x)} is a Cauchy sequence for every x ∈ I and a.e. ω ∈
Σk. Indeed, let

α(x) := sup
ω∈Σk

|x− g(ω, x)|

and note that for x fixed α(x) is finite as Σk is compact and g is continuous.
Given any ε′ > 0, choose ℓ∗(ω) sufficiently large that

α(x)C(ω)

∞∑
j=ℓ∗(ω)

ej(λ+ε) < ε′.

Then if m > ℓ > ℓ∗(ω),

|hm(ω, x)− hℓ(ω, x)| ≤ α(x)

∞∑
j=ℓ

∥hj(ω, ·)∥ ≤ α(x)c(ω)

∞∑
j=ℓ

ej(λ+ε) < ε′.

To see this note that

|hm(ω, x)− hℓ(ω, x)| = |hm(ω, x)− hm−1(ω, x) + · · ·+ hℓ+1(ω, x)− hℓ(ω, x)|.
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Note that applying G once to (σ−k(ω), x), gives G(σ−k(ω), x) = (σ−(k−1)(ω),
g(σ−k(ω), x)). Thus,

hk(ω, x)− hk−1(ω, x) = hk−1(ω, g(σ
−k(ω), x))− hk−1(ω, x).

As a result,

|hk−1(ω, x)− hk(ω, x)| ≤ ∥hk−1(ω, ·)∥|x− g(σ−k(ω), x)|.
Hence

|hm(ω, x)− hℓ(ω, x)| ≤ |hm(ω, x)− hm−1(ω, x)|+ · · ·+ |hℓ+1(ω, x)− hℓ(ω, x)|

=

m∑
j=ℓ+1

|hj(ω, x)− hj−1(ω, x)|

≤
m∑

j=ℓ+1

∥hj−1(ω, ·)∥|x− g(σ−j(ω), x)|

≤
∞∑

j=ℓ+1

∥hj−1(ω, ·)∥α(x).

Thus

|hm(ω, x)− hℓ(ω, x)| ≤ α(x)

∞∑
j=ℓ+1

∥hj−1(ω, ·)∥

= α(x)C(ω)

∞∑
j=ℓ+1

e(j−1)(λ+ε) < ε′

as ℓ > ℓ∗(ω). Thus there exists a subset Ω ⊆ Σk with ν(Ω) = 1, so that for
each ω ∈ Ω the sequence {hm(ω, x)} is a Cauchy sequence for every x ∈ I.
Define

γG : Ω → I, γG(ω) := lim
n→+∞

hn(ω, 0).

Since
G(ω, hℓ(ω, 0)) = (σω, hℓ+1(σω, 0)),

we see that
G(ω, γG(ω)) = (σω, γG(σω))

and hence ΓG, the graph of γG is invariant under G. Furthermore, by construc-
tion, for every ω ∈ Ω, one has

lim
n→+∞

|gn(ω, x)− gn(ω, γG(ω))| = lim
n→+∞

|gn(ω, x)− gn(ω, 0)| = 0.

This is because
|gn(ω, x)− gn(ω, 0)| ≤ ∥gn(ω, ·)∥|x|

and ∥gn(ω, ·)∥ → 0 as n → +∞.
Therefore, for every ω ∈ Ω,

(11) lim
n→+∞

gσ−1ω ◦ · · · ◦ gσ−nω(I) = lim
n→+∞

gσ−1ω ◦ · · · ◦ gσ−nω(0) = γG(ω).
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Hence, γG induces an invariant graph for G which is an attracting set by (11).
Consider the projection pG : ΓG → Σk, pG(ω, γG(ω)) = ω, which is an

isomorphism onto its image and the measure

(12) µG = (pG)∗ν = ν ◦ (id× γG)
−1.

Then the mixing properties of the base transformation (σ,Σk, ν) lift to the
transformation (G,ΓGΓ, µG). In particular, µG is Bernoulli which implies that
it is mixing. Every system that is mixing is also ergodic. Hence µG is an
ergodic measure. □

We now point out that the previous proposition with together the next two
results establish assertions (1) and (2) of the main result of this article, Theorem
1.11.

Proposition 2.7. For each skew product G ∈ U the maximal attractor Amax(G)
is either a continuous invariant graph or a bony attractor.

Proof. Take a skew product G ∈ U with G(ω, x) = (σω, g(ω, x)) = (σω, gω(x)).
By the previous proposition there exists a measurable function γG : Ω ⊆ Σk →
I with ν(Ω) = 1 such that ΓG the graph of γG is invariant under G. We claim
that ΓG ⊂ Amax(G).

Indeed, since Aω := Amax(G)∩ Iω =
⋂

n≥0 I(ω, n), where I(ω, n) := gσ−1ω ◦
· · · ◦ gσ−nω(I) and Iω := {ω} × I, and by using (11), one has

lim
n→+∞

gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I) = lim
n→+∞

gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(0) = γG(ω)

for each ω ∈ Ω, hence we observe that ΓG ⊂ Amax(G), as claimed.
Note that I(ω, n) is a sequence of nested intervals, and thus Aω = Amax(G)∩

Iω is either an interval or a single point. Also note that if some sequences ω
and ω′ are close enough to each other, say,

ω′
−n = ω−n, . . . , ω

′
−1 = ω−1,

then, using I(ω′, n) ⊃ Aω′ , we deduce I(ω, n) ⊃ Aω′ . This implies the upper-
semicontinuity of Aω. This semicontinuity will immediately imply the continu-
ity of its graph part.

Now there are two possibilities: either Ω = Σk and hence Amax(G) is a
continuous invariant graph, or the bones exist. In the later case, to verify
that Amax(G) is actually a bony attractor, it is enough to show that the set
of bones is contained in the closure of the graph. This will be done in the
following lemma which completes the proof of the proposition. □

Lemma 2.8. Let G ∈ U be a small perturbation of the skew product F given by
(8) such that its maximal attractor Amax(G) contains the bones with a graph
function γG defined on a full measure subset Ω ⊂ Σk. Then the bones are
contained in the closure of the graph ΓG.
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Proof. To prove the lemma it is enough to show that the maximal attractor
Amax(G) coincides with the closure of the intersection Amax(G) ∩ (Ω× I).

First, we notice that the fiber maps fi, i = 1, . . . , k − 1, of F are uniformly
contracting maps, by condition (H3), and the skew product G is C2-close to
F , hence, by (9), every sequence ω ∈ Σk without a tail of 0’s to the left belong
to Ω. Assume (ω, x) ∈ Amax(G) with ω ∈ Σk \ Ω. Then the sequence ω has a
tail of 0’s to the left (i.e., there exists n0 ∈ N so that for each n > n0, one has
ω−n = 0). We denote the set of sequences ω′ such that ωi = ω′

i for i ∈ [−N,N ]
by UN (ω) and the ε-neighborhood of the point x by Vε(x). Take n > n0 > N
with n = n0 + 2m for large enough m and h = g−1

σ−(n0+m)ω
◦ · · · ◦ g−1

σ−1ω. Note

that σ−(n0+m)ω has the following form

σ−(n0+m)ω = (. . . , 0, . . . , 0; 0, . . . , 0︸ ︷︷ ︸
m-times

, ω−n0
, . . . , ω−1, ω0, ω1, ω0, . . .).

Then the point (ω′, x′) = (σ−(n0+m)(ω), h(x)) ∈ Amax(G). Now we take the
sequence

ω̃ = (. . . , 1, 1, 0, . . . , 0︸ ︷︷ ︸
2m-times

, ω−n0
, . . . , ω−1;ω0, ω1, . . .)

which has a tail of 1’s to the left. Since f1 is a uniformly contracting map,
G is C2-close to F and by (9), we conclude that diam(gω̃−n

, . . . , gω̃−1
(I)) → 0

whenever n → +∞. Thus ω̃ ∈ Ω. Moreover, for 0 < δ < ε < 1 small and large
enough k, one has diam(gσ−n0−2m−kω̃ ◦ · · · ◦ gσ−n0−2m−2kω̃(I)) < δ < ε. Let us
take Iδ = gσ−n0−2m−kω̃ ◦ · · · ◦ gσ−n0−2m−2kω̃(I). Then for large enough m, we
have

gσ−n0−m−1ω̃ ◦ · · · ◦ gσ−n0−2mω̃(Iδ) ⊂ h(Vε(x)).

Thus, the pair (ω̃, γG(ω̃)) belongs to the intersection Amax(G) ∩ (Ω × I) ∩
(UN (ω)× Vε(x)) and hence the conclusion of the lemma holds. □

The next result ensures that the subset of all skew products G ∈ U having
a bony attractor is nonempty.

Lemma 2.9. There exists a small perturbation G ∈ U of F which admits a
bony graph attractor in the sense of Definition 1.10. In particular, the subset
of bones has the cardinality of the continuum and is dense in the attractor.

Proof. Consider the fiber map f0 satisfies conditions (H1) and (H2) in Sub-
section 2.1 with a weak attracting fixed point p0, and take a map g, C2-close
to f0, such that g = id on a small neighborhood U of the point p0. Now take
a small perturbation G of F so that for the sequence ω = (. . . , 0, 0, 0, . . .) ∈ Σk

one has gω = g. As you have seen before, for Iω = {ω} × I, and I(ω, n) =
gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I), one has Amax(G)

⋂
Iω =

⋂
n≥0 I(ω, n). Thus, we get

I(ω, n) = gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I) = g ◦ · · · ◦ g︸ ︷︷ ︸
(n)-times

(I) = gn(I)
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which ensures that Amax(G)
⋂
Iω =

⋂
n≥0 I(ω, n) is an interval, hence Amax(G)

is a bony attractor. Moreover, for each sequence ω′ ∈ Σk of the form ω′ =
(. . . , 0, 0;ω′

1, ω
′
2, . . .), it is not hard to see that Amax(G)

⋂
Iω′ is an interval.

Furthermore, by construction, for any finite word α of the alphabets {0, 1, . . .,
k−1} and a sequence ρ of the form ρ = (. . . , 0, 0, α, 0, 0, . . .) with α standing at
the zero position, Amax(G)

⋂
Iρ contains an interval. Thus the subset of bones

has the cardinality of the continuum and is dense in the attractor Amax(G). □

In what follows, we show that the maximal attractor Amax(F ) is thick,
this means that the projection of Amax(F ) on the fiber has positive Lebesgue
measure.

Lemma 2.10. Consider the skew product F given by (8). Then the maximal
attractor Amax(F ) is thick.

Proof. First, we recall conditions (H1)-(H6) of Subsection 2.1. By Proposi-
tion 2.6 and conditions (H2) and (H3), the maximal attractor Amax(F ) is a
continuous invariant graph. Consider the graph function γF : Σk → I and let
K = γF (Σk). We apply the covering property from condition (H6) and show
that the interval B with B ⊂ J = [p0, p1] introduced by (H6) is contained in
K. By this fact, Remark 2.4, the definition of measure µF given by (12) and
by construction, the maximal attractor Amax(F ) is thick. For that, we show
that for each x ∈ B, there exists a sequence (ω−n)n≥1 of {0, 1} so that

x = lim
n→+∞

fω−1
◦ · · · ◦ fω−n

(I).

First, we define, inductively, a sequence (ω−n)n≥1 of {0, 1} so that

x = lim
n→+∞

fω−1
◦ · · · ◦ fω−n

(B).

Assume that we have found ω−1, . . . , ω−n ∈ {0, 1} so that x ∈ fω−1 ◦ · · · ◦
fω−n(B). Then the covering property implies that

x ∈ fω−1
◦ · · · ◦ fω−n

(B) ⊂
1⋃

i=0

fω−1
◦ · · · ◦ fω−n

◦ fi(B),

hence we can find ω−(n+1) such that x ∈ fω−1
◦ · · · ◦ fω−n

◦ fω−(n+1)
(B). Take

any sequence ω′ ∈ Σk so that for each n ≥ 1, we have ω′
−n = ω−n. Then it is

easily seen that

x = lim
n→∞

fω−1
◦· · ·◦fω−n

(B) = lim
n→∞

fω−1
◦· · ·◦fω−n

(I) = lim
n→∞

fω′
−1
◦· · ·◦fω′

−n
(I)

as we claimed. □

The next proposition is an analogue of [6, Theorem 3.1] to our setting. It
asserts that the invariant measure for the perturbed system is continuous in
the Hutchinson metric and finishes the proof of Theorem 1.11.
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Proposition 2.11. Suppose G ∈ U with G(ω, x) = (σω, g(ω, x)). Then for
given ε > 0, by shrinking U , for ν almost every ω ∈ Σk and all x ∈ I, one has
that

d(Fn(ω, x), Gn(ω, x)) < ε,

except for at most a fraction ε of times n, where the distance d between two
points of Σk × I is the sum of the distances between their projections onto the
base and onto the fiber.

Furthermore, dH(µF , µG) < ε, where dH is Hutchinson metric given by (2)
and µF and µG are the measures obtained from Proposition 2.6 for F and G.
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