• Title/Summary/Keyword: random coefficient models

Search Result 100, Processing Time 0.02 seconds

Developing an Accident Model for Rural Signalized Intersections Using a Random Parameter Negative Binomial Method (RPNB모형을 이용한 지방부 신호교차로 교통사고 모형개발)

  • PARK, Min Ho;LEE, Dongmin
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.554-563
    • /
    • 2015
  • This study dealt with developing an accident model for rural signalized intersections with random parameter negative binomial method. The limitation of previous count models(especially, Poisson/Negative Binomial model) is not to explain the integrated variations in terms of time and the distinctive characters a specific point/segment has. This drawback of the traditional count models results in the underestimation of the standard error(t-value inflation) of the derived coefficient and finally affects the low-reliability of the whole model. To solve this problem, this study improves the limitation of traditional count models by suggesting the use of random parameter which takes account of heterogeneity of each point/segment. Through the analyses, it was found that the increase of traffic flow and pedestrian facilities on minor streets had positive effects on the increase of traffic accidents. Left turning lanes and median on major streets reduced the number of accidents. The analysis results show that the random parameter modeling is an effective method for investigating the influence on traffic accident from road geometries. However, this study could not analyze the effects of sequential changes of driving conditions including geometries and safety facilities.

Study of Virtual Goods Purchase Model Applying Dynamic Social Network Structure Variables (동적 소셜네트워크 구조 변수를 적용한 가상 재화 구매 모형 연구)

  • Lee, Hee-Tae;Bae, Jungho
    • Journal of Distribution Science
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2019
  • Purpose - The existing marketing studies using Social Network Analysis have assumed that network structure variables are time-invariant. However, a node's network position can fluctuate considerably over time and the node's network structure can be changed dynamically. Hence, if such a dynamic structural network characteristics are not specified for virtual goods purchase model, estimated parameters can be biased. In this paper, by comparing a time-invariant network structure specification model(base model) and time-varying network specification model(proposed model), the authors intend to prove whether the proposed model is superior to the base model. In addition, the authors also intend to investigate whether coefficients of network structure variables are random over time. Research design, data, and methodology - The data of this study are obtained from a Korean social network provider. The authors construct a monthly panel data by calculating the raw data. To fit the panel data, the authors derive random effects panel tobit model and multi-level mixed effects model. Results - First, the proposed model is better than that of the base model in terms of performance. Second, except for constraint, multi-level mixed effects models with random coefficient of every network structure variable(in-degree, out-degree, in-closeness centrality, out-closeness centrality, clustering coefficient) perform better than not random coefficient specification model. Conclusion - The size and importance of virtual goods market has been dramatically increasing. Notwithstanding such a strategic importance of virtual goods, there is little research on social influential factors which impact the intention of virtual good purchase. Even studies which investigated social influence factors have assumed that social network structure variables are time-invariant. However, the authors show that network structure variables are time-variant and coefficients of network structure variables are random over time. Thus, virtual goods purchase model with dynamic network structure variables performs better than that with static network structure model. Hence, if marketing practitioners intend to use social influences to sell virtual goods in social media, they had better consider time-varying social influences of network members. In addition, this study can be also differentiated from other related researches using survey data in that this study deals with actual field data.

Development of Random Wave Deformation Model due to Breaking on Arbitrary Beach Profiles (복합단면에 있어서 불규칙파에 의한 쇄파변형 모델의 개발)

  • ;Yoshimi Goda
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.87-94
    • /
    • 1996
  • Random wave breaking is one of the most important phenomena in coastal engineering. For two and half decades, various models have been proposed to predict wave height variations in the surf zone. However, some models are applicable to plane beaches only, some requires clumsy computation for a joint probability density of wave heights and periods, and some others need calibration with individual wave data. The present study aims at formulating a model simple enough but reasonably accurate. The merits of the present model are as follows: It is applicable to any shapes of bottom profiles; It requires the input data of incident wave heights and periods only without necessity of coefficient calibration with field data; and its computation time is minimal because it deals with representative waves directly.

  • PDF

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models (Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교)

  • Kang, Minsang;Son, Eunkuk;Lee, Jinjae;Kang, Seungjin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

Random Coefficient Models for Environmental Kuznets Curve Hypothesis in Seoul Metropolitan Region (확률계수모형을 이용한 수도권지역의 환경쿠즈네츠가설에 관한 재고찰)

  • Kim, Ji Uk
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.377-396
    • /
    • 2002
  • This paper investigates whether an inverted U relationship between pollution and economic development could be found in the Seoul metropolitan region using a panel data for the period of 1985~1999. We uses a model with a more flexible random coefficients specification which allows for a greater degree of regional heterogeneity. The emissions of sulfur dioxidetotal($SO_2$), suspended particulates(TSP), nitrogen dioxide($NO_2$), and carbon monoxide(CO) were selected as four major pollutants. We found that the emissions of these pollutants per capita except sulfur dioxidetotal exhibited inverted U shapes with per capita gross regional domestic product (GRDP). We also noted that the turning points for Seoul metropolitan region occured at a range of incomes, from $3,000 to $5,000 per capita.

  • PDF

Study on the Optimization of Powder Compaction Process Parameters (분말 가압 성형 공정 변수 최적화에 관한 연구)

  • Kim J. L.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.476-479
    • /
    • 2005
  • In this study, the process parameters in powder compaction are optimized for getting high relative densities. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multi-particle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of the particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method.

  • PDF

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.13-20
    • /
    • 2022
  • It's proposed and analyzed ML(Machine Learning) models to predict vehicle FC(Fuel Consumption) in real-time. The test driving was done for a car to measure vehicle speed, acceleration, road gradient and FC for training dataset. The various ML models were trained with feature data of speed, acceleration and road-gradient for target FC. There are two kind of ML models and one is regression type of linear regression and k-nearest neighbors regression and the other is classification type of k-nearest neighbors classifier, logistic regression, decision tree, random forest and gradient boosting in the study. The prediction accuracy is low in range of 0.5 ~ 0.6 for real-time FC and the classification type is more accurate than the regression ones. The prediction error for total FC has very low value of about 0.2 ~ 2.0% and regression models are more accurate than classification ones. It's for the coefficient of determination (R2) of accuracy score distributing predicted values along mean of targets as the coefficient decreases. Therefore regression models are good for total FC and classification ones are proper for real-time FC prediction.

Modelling Stem Diameter Variability in Pinus caribaea (Morelet) Plantations in South West Nigeria

  • Adesoye, Peter Oluremi
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.280-290
    • /
    • 2016
  • Stem diameter variability is an essential inventory result that provides useful information in forest management decisions. Little has been done to explore the modelling potentials of standard deviation (SDD) and coefficient of variation (CVD) of diameter at breast height (dbh). This study, therefore, was aimed at developing and testing models for predicting SDD and CVD in stands of Pinus caribaea Morelet (pine) in south west Nigeria. Sixty temporary sample plots of size $20m{\times}20m$, ranging between 15 and 37 years were sampled, covering the entire range of pine in south west Nigeria. The dbh (cm), total and merchantable heights (m), number of stems and age of trees were measured within each plot. Basal area ($m^2$), site index (m), relative spacing and percentile positions of dbh at $24^{th}$, $63^{rd}$, $76^{th}$ and $93^{rd}$ (i.e. $P_{24}$, $P_{63}$, $P_{76}$ and $P_{93}$) were computed from measured variables for each plot. Linear mixed model (LMM) was used to test the effects of locations (fixed) and plots (random). Six candidate models (3 for SDD and 3 for CVD), using three categories of explanatory variables (i.e. (i) only stand size measures, (ii) distribution measures, and (iii) combination of i and ii). The best model was chosen based on smaller relative standard error (RSE), prediction residual sum of squares (PRESS), corrected Akaike Information Criterion ($AIC_c$) and larger coefficient of determination ($R^2$). The results of the LMM indicated that location and plot effects were not significant. The CVD and SDD models having only measures of percentiles (i.e. $P_{24}$ and $P_{93}$) as predictors produced better predictions than others. However, CVD model produced the overall best predictions, because of the lower RSE and stability in measuring variability across different stand developments. The results demonstrate the potentials of CVD in modelling stem diameter variability in relationship with percentiles variables.

Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa (Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • Flammable substances are used in laboratories and industrial process. The flash point (FP) is one of the most important physical properties used to determine the potential for characterizing the fire and explosion hazard of liquids. The FP data at 101.3 kPa were measured for the binary systems {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} and {n-heptane+ ethylbenzene}. The experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured FPs were compared with the values predicted using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The average absolute deviation between the predicted and measured lower FP was less than 1.74 K.