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Abstract
Stem diameter variability is an essential inventory result that provides useful information in forest management decisions. 
Little has been done to explore the modelling potentials of standard deviation (SDD) and coefficient of variation (CVD) 
of diameter at breast height (dbh). This study, therefore, was aimed at developing and testing models for predicting 
SDD and CVD in stands of Pinus caribaea Morelet (pine) in south west Nigeria. Sixty temporary sample plots of size 
20 m×20 m, ranging between 15 and 37 years were sampled, covering the entire range of pine in south west Nigeria. 
The dbh (cm), total and merchantable heights (m), number of stems and age of trees were measured within each 
plot. Basal area (m2), site index (m), relative spacing and percentile positions of dbh at 24th, 63rd, 76th and 93rd (i.e. 
P24, P63, P76 and P93) were computed from measured variables for each plot. Linear mixed model (LMM) was used 
to test the effects of locations (fixed) and plots (random). Six candidate models (3 for SDD and 3 for CVD), using 
three categories of explanatory variables (i.e. (i) only stand size measures, (ii) distribution measures, and (iii) combination 
of i and ii). The best model was chosen based on smaller relative standard error (RSE), prediction residual sum of 
squares (PRESS), corrected Akaike Information Criterion (AICc) and larger coefficient of determination (R2). The results 
of the LMM indicated that location and plot effects were not significant. The CVD and SDD models having only measures 
of percentiles (i.e. P24 and P93) as predictors produced better predictions than others. However, CVD model produced 
the overall best predictions, because of the lower RSE and stability in measuring variability across different stand 
developments. The results demonstrate the potentials of CVD in modelling stem diameter variability in relationship 
with percentiles variables.
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Introduction

Diameter variability, which is an index of diameter dis-
tribution, is a very important information for forest man-
agement planning. It gives an insight to the structure of the 
forest. According to Fries et al. (1997) and Mc Elhinny et 
al. (2005), diameter distribution is an important attribute 

for the management and conservation of biodiversity in 
forests. This is because larger diameter trees tend to host 
many species. Several theoretical distributions such as 
Weibull, beta and Johnson’s SB functions have been used to 
describe stem diameter distribution (e.g. Bailey and Dell 
1973; Hafley and Schreuder 1977; Kilkki and Paivinen 
1986; Maltamo 1997; Tewari and Gadow 1997). Almost 
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invariably, the parameters of these functions have been pre-
dicted as a function of stand structure variables or solved 
from a system of equations. While these functions have pro-
duced varying degrees of success, there is however room for 
improvement. 

Currently, there are two main approaches for predicting 
distribution in tree size distribution modelling. These are, 
parameter prediction method (PPM) and parameter recov-
ery method (PRM) (Hyink and Moser 1983). The PPM 
involves obtaining parameters of a distribution function 
(say Weibull) from the fit data via maximum likelihood 
estimation. They are then used as dependent variables in re-
gression equation with stand variables like relative spacing, 
number of trees per unit area, site quality, etc. On the other 
hand, the PRM uses either the diameter moments or spe-
cific percentiles (or a hybrid of the two) which are predicted 
from stand attributes to recover the parameters of the dis-
tribution function (e.g. Lohrey and Bailey 1977; Parresol 
2003; Knowe et al. 2005; Mehtatalo et al. 2007). 

Several studies have been carried out on comparative as-
sessment of these parameter estimation methods (e.g. 
Baldwin and Feduccia 1987; Cao 2004; Poudel and Cao 
2013; Siipilehto and Mehtatalo 2013). The recurring con-
clusion from these studies is that the PRM seems to be a 
better approach. However, the focus of this study was not to 
compare parameter estimation methods for distribution 
function. The focus was rather, to investigate whether 
standard deviation of diameter (SDD) and coefficient of 
variation of diameter (CVD), which are chief characteristics 
of diameter variability are indeed independent from stand 
attributes like relative spacing, stand density, stand diame-
ter, age, site quality, percentiles etc. Therefore, the main 
thrust of this study is to explore the relationship between 
SDD/CVD and stand size variables. 

To date, little has been done to explore the modelling po-
tentials of the two main characteristics of stem diameter dis-
tribution (i.e. SDD and CVD). Zeide and Zhang (2000), 
proposed a model for estimating SDD using stand variables 
such as average diameter, number of trees and age. Their 
proposed model, which focused mainly on SDD, explained 
91% of the variation in SDD. However, standard deviation 
is often criticized to be difficult to interpret in magnitude. 
This is because standard deviation of smaller observations 
(say stem diameter of younger trees) tends to be small, 

while that of larger observations (e.g. diameter of larger 
trees) tends to be large. Furthermore, a lower standard de-
viation does not necessarily imply lesser variability. In this 
study, the coefficient of variation is proposed as a suitable 
alternative, because the standard deviation of observations 
must always be understood in the context of the mean of 
observations. The advantage of coefficient of variation is 
that it is unit-less. For comparison among different means, 
which is a recurring phenomenon when dealing with forest 
inventory data, coefficient of variation may be a better 
alternative. The purpose of this study is to investigate the 
modelling potentials of these two characteristics of diameter 
variability with stand size variables using Pinus caribaea 
stands datasets in south west Nigeria. 

The study hypothesis is that measures of central ten-
dency and distribution (which can be computed from forest 
inventory data) are sufficient to predict stem diameter vari-
ability in terms of SDD and CVD. The variability may dif-
fer from location to location because of differences in varia-
bles such as stand diameter, stand density, age, elevation 
and site quality. This study, therefore, propose a single 
model applicable to various stand conditions.

Materials and Methods

The Data

In this study, the data used for model fitting were col-
lected in 2011 on 60 temporary sample plots ranging be-
tween 15 and 37 years (Oyebade 2014). The selected loca-
tions cover the entire range of Pinus caribaea in south west 
Nigeria. The dataset came from three locations, viz., Omo, 
Oluwa and Shasha Forest Reserves. The three locations 
covered three states in the south west Nigeria notable for in-
dustrial forest plantations (i.e. Ogun, Ondo and Osun 
states). The Reserves are contiguous and have a mean an-
nual rainfall of about 2,050 mm and mean monthly temper-
ature of about 27oC (Adedeji and Adeofun 2014). The nat-
ural vegetation, which was previously lowland tropical rain-
forest (moist evergreen type), have been reduced to secon-
dary forests. Substantial parts of the Reserves were con-
verted to plantations with Gmelina arborea being the domi-
nant species planted. The pine stands in the three locations 
had no record of thinning and pruning. The Reserves are 
made up of several soil types but all belong to the tertiary 
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sediments (Ola-Adams 1999). The terrain is generally un-
dulating with maximum elevation of 150 m above sea level. 

Sixty temporary sample plots (TSPs) of size 20 m×20 m 
each and of different stand ages based on stocking density 
were sampled from Omo Forest Reserve (16 TSPs from 
stand ages 15 and 21 years); Oluwa Forest Reserve (36 
TSPs from stand ages 18, 20, 35, 36 and 37 years) and 
Shasha Forest Reserve (8 TSPs from stand age 27 years) in 
Ogun, Ondo and Osun States respectively using stratified 
random sampling method. The tree size variables measured 
within each plot include, diameter at breast height (cm), to-
tal and merchantable heights in meters (the merchantable 
limit is taken as height to the minimum top diameter of 10 
cm), number of stems and age. 

Model Formulation

Diameter variability is a function of many processes that 
constitute stand dynamics. Attempt was made to deduce the 
existence of variability from available variables. The model 
formulation procedures include selecting response and ex-
planatory variables, formulating appropriate models and 
evaluating the final models.

Response variables
In this study, two measures variability: standard devia-

tion in cm (SDD) and coefficient of variation (CVD) of the 
most easily and accurately measured stand variable – the 
tree diameter at breast height (in cm) were used as the pre-
dictor (or response variable).

Explanatory variables
As explanatory variables, all available variables were 

considered. These are, location, arithmetic mean diameter 
(Dm in cm), quadratic mean diameter (Dq in cm), number 
of trees/ha (N), basal area/ha (BA in m2), stand age (years), 
mean dominant height (Hd in m), site index (SI in m) and 
relative spacing (RS). In addition, the percentile positions 
at 24th (P24), 63rd (P63), 76th (P76) and 93rd (P93) of plot di-
ameter distribution were also considered. A rectangular 
correlation matrix of SDD and CVD against the ex-
planatory variables that are quantitative and continuous was 
carried out to give insights into the relationships between 
candidate response variables (i.e. SDD and CVD); and 
each explanatory variable. The relative spacing (RS) of the 

pine stands was computed using the formula:

RS=(10000/N)1/2/Hd ·········································· (1)

Where, N is the number of trees per hectare and Hd is the 
average dominant total height (m). 

For the purpose of site index estimation, four largest 
trees of pine were selected per plot (4 being representative 
of 100 largest trees per hectare in a 20 m×20 m plot). The 
four largest trees are dominant or co-dominant; have 
straight stems; are unsuppressed; showing no signs of dis-
ease or insect attack; and are healthy and vigorous. The 
average height of the four largest trees in each plot was ref-
erenced as the dominant height. The plantation age, ac-
cording to the year of establishment of the species was used 
as stand age. The site index for each plot was obtained by 
using the site index equation developed by Oyebade 
(2014). The equation is presented as follows:

  
 

  ····························· (2)

Where, SI denotes the site index (m), Hd is the average 
dominant total height (m), A is the stand age. An index age 
of 25 years was used.

Relationship between response and explanatory variables 
The identification of which of the available explanatory 

variables and their interactions are significant is considered 
the first step in developing appropriate model for diameter 
variability. In this study, plots were randomly selected from 
each location. This study therefore, uses location as fixed 
factor and plots as random factor. As a result, diameter vari-
ability (DVAR), in terms of SDD and CVD can be ex-
pressed by the following linear model: 

DVAR=X＋Z＋ ············································ (3)

Where, DVAR denotes an N×1 vector of SDD or CVD 
observations (N represents the number of observations),  
is a p×1 vector of unknown fixed effects parameters (p be-
ing the number of fixed-effects parameters), X is an N×P 
non-stochastic matrix of rank p of observations on the ex-
planatory variables,  is a k×1 vector of unknown ran-
dom-effects parameters (k being the number of random- 
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effects parameters), Z is an N×k known design matrix, 
containing either continuous or dummy variables, and ε is 
N×1 vector of random unobservable errors. 

This is a mixed model because both fixed – effects pa-
rameters () and random – effects parameters () are 
included. Both  and  are assumed to be normally dis-
tributed with expectation, E and variance Var:
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Where, G is the variance of  that is equal to I
2 (I is an 

N×N identity matrix and 
2 is the variance due to ran-

dom-effects), and R equals Ie
2 (e

2 is the residual var-
iance). 

The normality assumption is satisfied judging from the 
number of observations that is sufficiently large according 
to the central limit theorem. Locations (fixed) and plots 
(random) are class variables. The other set of explanatory 
variables and their interactions were tested. The test re-
vealed that the effect of location is not significant. The co-
variance parameter of the plot variance was also found to be 
redundant. Analysis of variance (Eq.2) suggested the fol-
lowing predictors of DVAR (i.e. SDD and CVD): Dm, P63, 
and P93. As a further step to confirm the findings in linear 
mixed model, stepwise regression methods (using back-
ward elimination and stepwise procedures) were used to 
identify suitable explanatory variables. The three ex-
planatory variables were still found suitable. However, 
when their variance inflation factors (VIFs) were checked, 
there was the problem of multi-collinearity as the VIFs for 
Dm and P63 were found to be 31.1 and 29.3 respectively. 
These values exceed 10 and showed apparent multi- 
collinearity. The promising alternative was using P24 and 
P93 as explanatory variables. 

Therefore, in terms of the explanatory variables consid-
ered, three categories of models were investigated. The 
three categories are:

(i) Models with explanatory variables that are mainly 
measures of average tree size, stand age, stand den-
sity and stand productivity (i.e. A, N/ha, Dm, Dq, 
BA/ha, RS and SI)

(ii) Models with explanatory variables that are mainly 

measures of distribution (i.e. P24, P63, P76 and P93)
(iii) Models with explanatory variables that are based on 

the combinations of (i) and (ii)
Multiple linear model was proposed and fitted to the 

data. The proposed models are generally of the form:

    ⋯ ······················· (5)

    ⋯ ······················· (6)

Where, X1, X2 … Xn are the explanatory variables (i.e. Dq, 
Dm, N, Age, P24, P63, P76 and P93, Hd, SI, and RS). All the 
candidate explanatory variables, under each model catego-
ries were considered using backward elimination and step-
wise approach. Furthermore, the suitable variables were 
checked for multicollinerity by observing their variance in-
flation factors (VIFs). For the purpose of addressing the is-
sue of thinning and pruning in the future, it was essential to 
obtain future values for suitable explanatory variables. 
Hence prediction equations were also formulated for the 
explanatory variables of the best model for the purpose of 
obtaining the future values of the explanatory variables.

Goodness-of-fit Criteria

To evaluate models performance and to compare them, 
standard error of estimate (SEE), relative standard error 
(RSE), coefficient of determination (R2), prediction re-
sidual sum of squares (PRESS) and Akaike’s Information 
Criterion (AIC) were employed. Model comparison was 
essentially done under each category of response variable. 
Then, RSE was used to select the overall best model. The 
evaluation statistics are defined as follows: 
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Table 1. Summary statistics of plot data used for model development

Variable Minimum Maximum Mean SD CV

A (years) 15 37 26.72 8.28 0.310
Dm (cm) 15.74 46.52 25.78 7.46 0.289
N/ha 125 1,750 663.33 403.49 0.608
SDD (cm) 3.75 13.70 7.50 2.42 0.323
CVD 0.14 0.42 0.29 0.06 0.207
P24 (cm) 12.29 46.18 20.38 7.13 0.350
P63 (cm) 16.79 52.42 27.87 8.32 0.299
P76 (cm) 18.43 54.21 30.56 8.86 0.290
P93 (cm) 20.5 54.62 36.37 9.20 0.253
BA/ha (m2) 9.00 70.25 31.07 10.94 0.352
Dq (cm) 17.45 48.00 27.36 7.97 0.291
Hd (cm) 10.80 20.60 16.61 2.76 0.166
SI (cm) 5.77 26.95 17.47 7.15 0.409
RS 0.17 0.49 0.27 0.07 0.245

Note: A is the plot age, Dm is the arithmetic mean diameter at breast height in each plot, N/ha is the number of stems per hectare, P24, P63, P76

and P93 are the 24th, 63rd, 76th and 93rd percentiles distribution of the stem diameter at breast height in each plot, BA/ha is the basal area per 
hectare, Dq is the quadratic mean diameter at breast height in each plot, Hd is the average dominant height in each plot, SI is the site index, RS 
is the relative spacing,  SDD and CVD are as earlier defined.
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 ·································· (10)
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 ··································· (11)

Where, yi is the observed value for the ith observation,   is 
predicted value for the ith observation,   is mean of y ob-
servations, ＊  is the predicted value of y for observation i 
as calculated from a regression equation derived through 
fitting the p parameter model to a data set obtained by de-
leting observation i from the original data set, n is the total 
number of observations used to fit the model, SSE is the re-
sidual or error sum of squares and k is the number of pa-
rameters in the model including the error term. Model with 
smaller values of PRESS, AIC, SEE, RSE; and higher 
value of R2 was considered to have better fit.

When n is small compared to k (usually, the rule of the 
thumb is that if n/k ＜40, then n is small), it has been 
shown that AIC is too small and bias (e.g. Burnham and 
Anderson 2002; Royall 1997). The corrected AIC value 
(AICc) is more accurate and can be computed as follows:

 


··································· (12)

Results 

Data Summary

The summary statistics of the datasets for model fitting 
are presented in Table 1. The data covered a relatively wide 
age range (i.e. 15-37 years). The two measures of variability 
(i.e. standard deviation−SD; and coefficient of variation− 
CV) differ in their summary of stand variables. The standard 
deviations of the stand variables are quite unreliable in the 
summary statistics (Table 1). The smallest SD was obtained 
for relative spacing (i.e. RS of 0.07), while the largest SD 
was obtained for number of stems per hectare (i.e. N of 
403.49). It can be observed that stand variables having larg-
er means tend to have larger SD values and those with small-
er means tend to have smaller SD. Conversely, an examina-
tion of the coefficient of variation reveals a more reliable 
measure of variability. The smallest CV was obtained for 
mean dominant height (i.e. CV of 0.166), while the largest 
CV was obtained for number of stems per hectare. Larger 
means was not necessarily attributed to larger CV. 
Furthermore, the two measures of variability differ in their 
summary of percentile positions. Standard deviation in-
creases with increasing percentile position, whereas, co-
efficient of variation decreases with increasing percentile 
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Table 3. Candidate models with parameter estimates and fit statistics for CVD and SDD 

Model No Model R2 AICc SEE RSE% PRESS

Candidate CVD Models

1. CVD=0.292−0.0074Dm+0.0016BA＋0.0083SI 0.43 −357.06 0.0481 16.36 0.1497
2. CVD=0.230−0.0126P24+0.0088P93 0.77 −414.67 0.030 10.20 0.0695
3. CVD=0.348＋0.0035P93−0.682RS 0.40 −356.50 0.0489 16.63 0.1538

Candidate SDD Models
4. SDD=1.50+0.0395BA+0.274SI 0.66 126.08 1.4340 19.11 128.6910
5. SDD=−1.716−0.226P24＋0.366P93 0.90 −22.77 0.7891 10.52 51.5931
6. SDD=1.67+0.0888P76 + 0.178SI 0.66 48.16 1.4244 18.99 130.7000

Table 2. Rectangular matrix of correlation coefficients of SDD and CVD against stand variables

Dm N/ha A BA/ha Dq P24 P63 P76 P93 Hd SI RS

SDD 0.67* −0.50* 0.80* 0.10 0.58* 0.44* 0.72* 0.75* 0.86* 0.63* 0.79* 0.24
CVD −0.17 0.11 0.21 0.23 −0.16 −0.40* −0.09 −0.05 0.15 0.21 0.23 −0.45*

Marked correlations are significant at p＜0.05.

position. It can be deduced that variability is indeed higher 
in lower percentile positions than higher percentile positions.

The result of the rectangular correlation analysis of SDD 
and CVD against stand variables is presented in Table 2. 
The SDD was positively related to all the stand variables 
except number of stems per hectare with negative 
correlation. Relative spacing and basal area per hectare 
were not correlated with SDD. The highest correlation 
with SDD was found for P93. On the other hand CVD was 
negatively correlated with P24 and RS. CVD was not corre-
lated with the other stand variables. In general, the stand 
variables considered in this study may be grouped into four 
broad categories. These are:

(i) average tree size or dimension (i.e. Dm, Dq and Hd)
(ii) stand density or stand productivity (i.e. N/ha, BA/ha, 

SI and RS)
(iii) tree size distribution (i.e. P24, P63, P76 and P93) and 
(iv) stand age (i.e. A) 
Consistent positive values of correlation coefficients be-

tween SDD and each average tree size, stand age and tree 
size distribution variables suggested that SDD increased 
with increasing tree size, age and tree size distribution 
variables. Negative value of correlation coefficient between 
SDD and N/ha illustrated that SDD decreased with in-
creasing stand density. The relationship between CVD and 

the various categories of stand variables can be depicted 
using similar approach.

Models for Predicting SDD and CVD

The specific candidate models fitted to the data with 
their corresponding parameter estimates, fit and prediction 
statistics are presented in Table 3. The candidate models 
under CVD and SDD were based on three categories of ex-
planatory variables as earlier pointed out. All the parameter 
estimates of the candidate models are statistically significant 
at 5% probability. 

On the basis of estimated R2 values, 40 to 77% of the to-
tal variation in observed CVD values was explained by the 
three candidate CVD models. The fit statistics for the can-
didate CVD models showed that model 2 with explanatory 
variables that are mainly based on measures of distribution 
was the best. The prediction statistics (i.e. PRESS and 
RSE) obtained for the candidate CVD models provide 
some indication of the prediction accuracy of the three can-
didate CVD models. The PRESS and RSE values of mod-
el 2 were consistently smaller. Also, the AICc and SEE for 
model 2 were the smallest among the CVD candidate 
models. All the fit and prediction statistics were consistent 
in their judgements. 

Similarly, on the basis of estimated R2 values, 66 to 90% 
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Fig. 1. Distributions of residuals of CVD with model 2 and SDD with 
model 5.

Fig. 2. Relationships between the fitted and the observed values of CVD 
and SDD of models 2 and 5.

of the total variation in observed SDD values was explained 
by the three candidate SDD models. The fit statistics for the 
candidate SDD models again, showed that model 5 with ex-
planatory variables that are mainly based on measures of dis-
tribution was the best. All the fit and prediction statistics 
were consistent in their judgements of the best model. The 
R2 value was highest for model 5. The AICc, SEE, PRESS 
and RSE values were the smallest for model 5.

Although, it is not appropriate to compare two models 
with different response variables, using the coefficient of 
determination and standard error of estimate values, the use 
of relative standard error (RSE) can, however, be very use-
ful for such comparison. Hence, comparison of the two best 
models (2 and 5) on the basis of relative standard error in-
dicate that model 2 is slightly superior to model 5. Fig. 1 
shows the residual distributions of models 2 and 5 across 
their respective range of fitted values. It can be seen that 
model 2 showed a more constant error variance compared 
to model 5 that showed increasing error variance across the 
range of fitted values. This implies that model 5 violates the 
constant error assumption. Fig. 2 shows the relationships 

between the fitted values and the observed values of these 
two models. Figs. 3 and 4 show the predicted surface of 
CVD and SDD respectively, for a range of observed P24 
and P93. The CVD increased with increasing P93, but de-
creased with increasing P24 (Fig. 3). Similar trend was ob-
served for SDD versus P24 and P93 (Fig. 4). On the basis of 
the above analysis, the CVD model 2, with explanatory var-
iables that are mainly based on measures of distribution, 
displays sufficiently high predictive power to constitute a fi-
nal model for predicting stem diameter variability of Pinus 
caribaea trees in the study area. 

Prediction Equation for P24 and P93

To obtain the future values of P24 and P93, prediction 
equation was obtained for the two explanatory variables. 
The final equations obtained for these variables are pre-
sented as follows:

  − ················· (13)
R2=0.93, SEE=0.0772, RSE=2.60%, PRESS=0.3749
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Fig. 3. Surface plot of predicted CVD versus P24 and P93 for Pinus caribaea 
using model 2 (n=60).

Fig. 4. Surface plot of predicted SDD versus P24 and P93 for Pinus caribaea 
using model 5 (n=60).

   ················· (14)
R2=0.89, SEE=0.0845, RSE=2.41%, PRESS=0.4500

It is noteworthy that P24 is negatively related to age, and 
positively related to arithmetic average diameter at breast 
height. The implication is that P24 increases with increase in 
average diameter, but decrease with increase in age. 
Whereas, P93 is positively related to age and arithmetic 
average of diameter at breast height. The two prediction 
equations are found suitable for the purpose of obtaining 
the future values of P24 and P93.

Discussion

In this study, models predicting diameter variability in 
terms of coefficient of variation and standard deviation of 
diameter at breast height were estimated using backward 
elimination and stepwise regression methods. Stand varia-
bles considered as possible explanatory variables were cate-
gorized into: (i) measures of tree size, stand density, age or 
stand productivity, (ii) measures of stem size distribution, 
and (iii) combination of (i) and (ii). Initially, fixed effects of 
location and random effect of plots were tested using linear 
mixed model. However, the test revealed that location was 
not statistically significant and the random effect of plots 

was redundant. This is probably, because the three locations 
representing the entire native range of pine in the south-
western Nigeria are contiguous. The pine stands in these 
locations had no record of thinning and pruning. 

Quite many studies have provided information on the ca-
pacity of stand variables to predict percentile based diame-
ter distribution (e.g. Baldwin and Feduccia 1987; Borders 
et al. 1987; Maltamo et al. 2000; Cao 2004; Poudel and 
Cao 2013). However, few studies, to date, have pointed out 
the relationship between measures of variability (i.e. SDD 
and CVD) and stand variables (e.g. Zeide and Zhang 
2000). The apparent significant correlations between 
standard deviation of diameter (SDD) and most of the 
stand variables obtained in this study is similar to the find-
ings of Zeide and Zhang (2000). It was observed that the 
coefficient of variation of diameter was not significantly 
correlated with most of the stand variables. This could 
probably be due to the fact that coefficient of variation of di-
ameter is a ratio. Cohen et al. (2003) indicated that the 
Pearson product-moment correlation coefficient may be 
spurious and misleading when used to measure relationship 
between a ratio and another ratio or variable. Hence, seri-
ous consideration was not given to the results of the correla-
tion during model development. 

The standard deviation of diameter was positively corre-
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lated with the 24th percentile (P24) of diameter distribution. 
However, when the same variable (i.e. P24) was used as ex-
planatory variable together with P93 in predicting SDD, it 
was negatively related. This indicate that SDD could be 
very unstable and unreliable under different stand 
developments. This trend was not found for CVD in this 
study. The trend observed in the correlation (at least in 
terms of direction of relationship) was consistent with that 
observed in the regression. McDonald (2014) has pointed 
out that coefficient of variation may be a more useful meas-
ure of variability than standard deviation.

Among the six candidate models tested, models with 
measures of distribution as the explanatory variables ranked 
best. This confirms the findings of Koesmarno et al. (1995) 
and Koesmarno (1996) who found percentile intervals tech-
nique to be flexible and efficient in modelling diameter 
variability. The best two models showed similar trend in re-
lationship with the explanatory variables (i.e. P24 and P93). 
Both CVD and SDD were negatively related to P24 and 
positively related to P93. This finding implies that CVD and 
SDD increase with P93, but decrease with increase in P24. 
Each of these variables is statistically significant. At the 
same time, this finding raise a question: why are CVD and 
SDD negatively related to P24, but positively related to P93? 
A possible reason for this could be as a result of the trend in 
the variability of the underlying data (i.e. Table 1). A closer 
observation of the data summary, especially, the measures of 
distribution (P24, P63, P76 and P93), revealed that real dis-
persion (i.e. checking the values of CV) was highest for P24 
and least for P93 across the range of stand conditions in the 
study area. Again, naturally, P24 values will be higher in 
older stands than younger stands, and relative variability 
will be smaller in older stands. Hence, there is a high ten-
dency for negative relationship between P24 and CVD/SDD.

The CVD model having measures of distribution (i.e. 
P24 and P93) was found to be the best in terms of good-
ness-of-fit criteria and prediction accuracy. The reason for 
this was also based on the fact that CVD as a measure of 
variability is relativized over a range of stand conditions and 
is unaffected by the form or size of inventory data, com-
pared to SDD. The use of relative standard error to com-
pare SDD and CVD models provides the basis for such 
comparison. It is also important to note that this study was 
conducted in unthinned and unpruned stands of Pinus 

caribaea. Essentially, during thinning, a stand is affected in 
terms of number of stems, average diameter at breast height 
and average dominant height. Prediction equations ob-
tained for P24 and P93 in this study were found suitable for 
the purpose of obtaining the future values of the ex-
planatory variables. This confirms the findings in previous 
studies that a good relationship exists between percentile 
positions of diameter at breast height and stand variables 
(e.g. Eerikainen and Maltamo 2003; Mehtatalo et al. 2008; 
Yatich 2009; Lumbres and Lee 2014). 

Conclusion 

The modelling potentials of two chief characteristics of 
stem diameter variability, standard deviation of diameter 
(SDD) and coefficient of variation of diameter (CVD) were 
investigated using Pinus caribaea stands in south west 
Nigeria. Six candidate models (3 for CVD and 3 for SDD) 
were investigated. This study shows that models with only 
measures of stem diameter distribution (i.e. P24 and P93) as 
explanatory variables ranked the best. The CVD model 2 
was found to be the overall best for the prediction of stem 
diameter variability of Pinus caribaea stands in the south 
west Nigeria. This is because of the lower relative standard 
error (RSE) and the stability of the CVD in measuring var-
iability across the different stand developments unlike the 
standard deviation of diameter. The CVD increases with 
P93 and it decreases with increase in P24. This trend was al-
so observed with SDD, although, the correlation results 
showed opposing trend. This indicated that SDD could be 
unstable and unreliable. Each of the explanatory variables is 
statistically significant and, to some extent, ecologically 
meaningful. Furthermore, prediction equations were ob-
tained for P24 and P93, for the purpose of addressing thin-
ning and pruning scenarios. Again, age was negatively re-
lated to P24, but positively related to P93. These results raise 
a question: why does P24 decrease with increase in age, 
SDD and CVD? It is expected that stand level growth 
models based on stem diameter distribution can be im-
proved by using the CVD model 2.
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