DOI QR코드

DOI QR Code

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita (Department of Civil Engineering, Shoolini University) ;
  • Thakur, M.S. (Department of Civil Engineering, Shoolini University) ;
  • Sharma, Nitisha (Department of Civil Engineering, Shoolini University) ;
  • Almohammed, Fadi H. (Department of Civil Engineering, Shoolini University) ;
  • Sihag, Parveen (Department of Civil Engineering, Chandigarh University)
  • Received : 2021.10.14
  • Accepted : 2022.03.16
  • Published : 2022.07.25

Abstract

This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

Keywords

Acknowledgement

We, the authors, would like to express our gratitude to the researchers whose findings we have mentioned in this work.

References

  1. Abdelsalam, M., Yue, Y., Khater, A., Luo, D., Musanyufu, J. and Qin, X. (2020), "Laboratory study on the performance of asphalt mixes modified with a novel composite of diatomite powder and lignin fiber", Appl. Sci., 10(16), 5517. https://doi.org/10.3390/app10165517.
  2. Abdi, A., Zarei, M., Mehdinazar, M., Akbarinia, F. and Nikbakht, E. (2021), "Economic analysis based on the unit weight of hot mix asphalt", Eng. Solid Mech., 9(1), 93-100. https://doi.org/10.5267/j.esm.2020.5.001.
  3. Aliha, M.R.M., Fazaeli, H., Aghajani, S. and Nejad, F.M. (2015), "Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures", Constr. Build. Mater., 95, 545-555. https://doi.org/10.1016/j.conbuildmat.2015.07.165.
  4. Aliha, M.R.M., Razmi, A. and Mansourian, A. (2017a), "The influence of natural and synthetic fibers on low temperature mixed mode I + II fracture behavior of warm mix asphalt (WMA) materials", Eng. Fract. Mech., 182, 322-336. https://doi.org/10.1016/j.engfracmech.2017.06.003.
  5. Aliha, M.R.M., Sarbijan, M.J. and Bahmani, A. (2017b), "Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations", Constr. Build. Mater., 155, 789-799. https://doi.org/10.1016/j.conbuildmat.2017.08.093.
  6. Aliha, M.R.M., Razmi, A. and Mousavi, A. (2018), "Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen" Constr. Build. Mater., 190, 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.149.
  7. Angelaki, A., Singh Nain, S., Singh, V. and Sihag, P. (2021), "Estimation of models for cumulative infiltration of soil using machine learning methods", ISH J. Hydraul. Eng., 27(2), 162-169. https://doi.org/10.1080/09715010.2018.1531274.
  8. Asdollah-Tabar, M., Heidari-Rarani, M. and Aliha, M.R.M. (2021), "The effect of recycled PET bottles on the fracture toughness of polymer concrete", Compos. Commun., 25, 100684. https://doi.org/10.1016/j.coco.2021.100684.
  9. ASTM C127 (1992), Test method for specific gravity and absorption of coarse aggregate, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  10. ASTM C131 (2010), Standard test method for resistance to degradation of small-size coarse aggregate, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  11. ASTM C128 (2016), Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  12. ASTM D1559 (1989), Resistance to plastic flow of bituminous mixtures using marshall apparatus, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  13. ASTM D36/D36M-14 (2020), Standard test method for softening point of bitumen (ring-and-ball apparatus), ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  14. ASTM D4791-19 (2019), Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  15. ASTM D5/D5M-20 (2020), Standard test method for penetration of bituminous materials, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  16. ASTM D6913-04 (2009), Standard test methods for particle size distribution of soils, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  17. ASTM D70/D70M-21 (2021), Standard test method for specific gravity and density of semi-solid asphalt binder (pycnometer method), ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  18. ASTM D92-18 (2018), Standard test method for flash and fire points by cleveland open cup tester, ASTM International; West Conshohocken, Pennsylvania, U.S.A.
  19. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks". Adv. Comput. Des, 3(3), 289-302. http://doi.org/10.12989/acd.2018.3.3.289.
  20. BS 812-105 (1990), Testing aggregates, Methods of determination of particle shape elongation index of coarse aggregates, BSI Group; Loughborough, U.K.
  21. Cao, Y.F., Wu, W., Zhang, H.L. and Pan, J.M. (2013), "Prediction of the elastic modulus of self-compacting concrete based on SVM", Appl. Mech. Mater., 357, 1023-1026. https://doi.org/10.4028/www.scientific.net/AMM.357-360.1023.
  22. Celauro, C. and Pratico, F.G. (2018), "Asphalt mixtures modified with basalt fibres for surface courses", Constr. Build. Mater., 170, 245-253. https://doi.org/10.1016/j.conbuildmat.2018.03.058.
  23. Cong, P., Zhang, Y. and Liu, N. (2016), "Investigation of the properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement", Constr. Build. Mater., 113, 334-340. https://doi.org/10.1016/j.conbuildmat.2016.03.059.
  24. Cook, R., Lapeyre, J., Ma, H. and Kumar, A. (2019), "Prediction of compressive strength of concrete: critical comparison of performance of a hybrid machine learning model with standalone models". J. Mater. Civil Eng., 31(11), 04019255. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902.
  25. Dai, B., Gu, C., Zhao, E. and Qin, X. (2018), "Statistical model optimized random forest regression model for concrete dam deformation monitoring", Struct. Health Monit, 25(6), e2170. https://doi.org/10.1002/stc.2170.
  26. Daneshfar, M., Hassani, A., Aliha, M.R.M. and Berto, F. (2017), "Evaluating mechanical properties of macro-synthetic fiber-reinforced concrete with various types and contents", Strength Mater., 49(5), 618-626. https://doi.org/10.1007/s11223-017-9907-z.
  27. Fakhri, M., Amoosoltani, E. and Aliha, M.R.M. (2017), "Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber" Eng. Fract. Mech., 180, 43-59. https://doi.org/10.1016/j.engfracmech.2017.05.011.
  28. Farooq, F., Nasir Amin, M., Khan, K., Rehan Sadiq, M., Faisal Javed, M., Aslam, F. and Alyousef, R. (2020), "A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC)", Appl. Sci., 10(20), 7330. https://doi.org/10.3390/app10207330.
  29. Fu, J., Liu, H.B. and Cheng, Y.C. (2007), "Mechanical parameter measuring and contrastive analysis on pavement performance of glass fiber reinforced bituminous mixtures", International Conference on Transportation Engineering 2007, Chengdu, China, July. https://doi.org/10.1061/40932(246)70.
  30. Ganesh, K. and Prajwal, D.T. (2020), "Studies on fatigue performance of modified dense bituminous macadam mix using nano silica as an additive" Int. J. Pavement Res. Technol., 13(1), 75-82. https://doi.org/10.1007/s42947-019-0087-z.
  31. Geckil, T. and Ahmedzade, P. (2020), "Effects of carbon fibre on performance properties of asphalt mixtures", Balt. J. Road Bridge Eng., 15(2). https://doi.org/10.7250/bjrbe.2020-15.472.
  32. Hosseinian, S.M., Najafi Moghaddam Gilani, V., Mehraban Joobani, P. and Arabani, M. (2020), "Investigation of moisture sensitivity and conductivity properties of inductive asphalt mixtures containing steel wool fiber", Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/8890814.
  33. Huang, J., Duan, T., Zhang, Y., Liu, J., Zhang, J. and Lei, Y. (2020), "Predicting the permeability of pervious concrete based on the beetle antennae search algorithm and random forest model" Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/8863181.
  34. Jahromi, S.G. (2015), "Effect of carbon nanofiber on mechanical behavior of asphalt concrete", Int. J. Sustain. Constr. Eng. Tech. 6(2), 57-66.
  35. Janmohammadi, O., Safa, E., Zarei, M. and Zarei, A. (2020), "Simultaneous effects of ethyl vinyl acetate (EVA) and glass fiber on the properties of the hot mix asphalt (HMA)". SN Appl. Sci., 2(7), 1-14. https://doi.org/10.1007/s42452-020-2977-8.
  36. Khabiri, M.M. and Alidadi, M., 2016. "The experimental study of the effect of glass and carbon fiber on physical and micro-structure behavior of asphalt". Int. J. Integr. Eng., 8(3).
  37. Khater, A., Luo, D., Abdelsalam, M., Yue, Y., Hou, Y. and Ghazy, M. (2021), "Laboratory evaluation of asphalt mixture performance using composite admixtures of lignin and glass fibers", Appl. Sci., 11(1), 364. https://doi.org/10.3390/app11010364.
  38. Khuntia, S., Das, A.K., Mohanty, M. and Panda, M. (2014), "Prediction of Marshall parameters of modified bituminous mixtures using artificial intelligence techniques". Int. J. Transport. Sci. Tech., 3(3), 211-227. https://doi.org/10.1260/2046-0430.3.3.211.
  39. Li, Z., Cheng, C., Kwan, M.P., Tong, X. and Tian, S. (2019), "Identifying asphalt pavement distress using UAV LiDAR point cloud data and random forest classification", ISPRS Int. J. Geo-Inform., 8(1), 39. https://doi.org/10.3390/ijgi8010039.
  40. Liu, L., Liu, Z., Li, S. and Xiang, Y. (2018) "Research of Marshall Test Evaluation Method Based on Anti-Cracking Material", Transportation Research Congress 2016: Innovations in Transportation Research Infrastructure, Beijing, China, June.
  41. Liu, X. and Wu, S. (2011), "Study on the graphite and carbon fiber modified asphalt concrete", Constr. Build. Mater., 25(4), 1807-1811. https://doi.org/10.1016/j.conbuildmat.2010.11.082.
  42. Mahrez, A., Karim, M.R. and bt Katman, H.Y. (2005), "Fatigue and deformation properties of glass fiber reinforced bituminous mixes", J. Eastern Asia Soc. Transport. Stud., 6, 997-1007. https://doi.org/10.11175/easts.6.997.
  43. Mohammed, M., Parry, T., Thom, N. and Grenfell, J. (2020), "Microstructure and mechanical properties of fibre reinforced asphalt mixtures", Constr. Build. Mater., 240, 117932. https://doi.org/10.1016/j.conbuildmat.2019.117932.
  44. Motamedi, H., Fazaeli, H., Aliha, M.R.M. and Amiri, H.R. (2020), "Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen", Constr. Build. Mater., 234, 117365. https://doi.org/10.1016/j.conbuildmat.2019.117365.
  45. Mrema, A.H., Noh, S.H., Kwon, O.S. and Lee, J.J. (2020), "Performance of glass wool fibers in asphalt concrete mixtures", Materials, 13(21), 4699. https://doi.org/10.3390/ma13214699.
  46. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
  47. Ozgan, E. (2011), "Artificial neural network based modelling of the Marshall Stability of asphalt concrete", Expert Syst. Appl., 38(5), 6025-6030. https://doi.org/10.1016/j.eswa.2010.11.018.
  48. Park, J.Y., Yoon, Y.G. and Oh, T.K. (2019), "Prediction of concrete strength with P-, S-, R-wave velocities by support vector machine (SVM) and artificial neural network (ANN)", Appl. Sci., 9(19), 4053. http://dx.doi.org/10.3390/app9194053.
  49. Pasha, S.N. and Madhuri, M. (2017), "Investigation of modified bitumen using asbestos fibre in dense bituminous macadam", Int. J. Adv. Res. Innovat. I. Educ., 3(6), 298-311.
  50. Rahimipour, A., Hejazi, F., Vaghei, R. and Jaafar, M.S. (2016), "Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading", Comput. Concrete, 18(6), 1083-1096. http://dx.doi.org/10.12989/cac.2016.18.6.1083.
  51. Rizvi, S., Singh, R. and Gupta, S. (2021), "The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process", Eng. Solid Mech., 9(3), 299-310. https://doi.org/10.5267/j.esm.2021.2.001
  52. Rooholamini, H., Hassani, A. and Aliha, M.R.M. (2018), "Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology", Constr. Build. Mater., 159, 517-529. https://doi.org/10.1016/j.conbuildmat.2017.11.002
  53. Saffarzadeh, M. and Heidaripanah, A. (2009), "Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks". Sci. Iran., 16(1).
  54. Saleem, A.A. and Ismael, M.Q. (2020), "Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers". Civil Eng. J., 6(9), 1726-1738. http://doi.org/10.28991/cej-2020-03091578.
  55. Sangeetha, P. and Shanmugapriya, M. (2020), "GFRP wrapped concrete column compressive strength prediction through neural network". SN Appl. Sci., 2(12), 1-11. https://doi.org/10.1007/s42452-020-03753-4.
  56. Seitllari, A., Kumbargeri, Y.S., Biligiri, K.P. and Boz, I. (2019), "A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator", Mater. Struct., 52(5), 1-11. https://doi.org/10.1617/s11527-019-1402-5.
  57. Serin, S., Morova, N., Sargin, S., Terzi, S. and Saltan, M. (2013), "The fuzzy logic model for the prediction of marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate", Suleyman Demirel universitesi Fen Bilimleri Enstitusu Dergisi, 17(1), 163-172. https://doi.org/10.19113/sdufbed.79420.
  58. Shanbara, H.K. (2011), "Effect of carbon fiber on the performance of reinforced asphalt concrete mixture". Muthanna J. Eng. Tech., 1(1), 39-51.
  59. Shukla, M., Tiwari, D. and Sitaramanjaneyulu, K. (2014), "Performance characteristics of fiber modified asphalt concrete mixes", Int. J. Pavement Eng. Asphalt Tech., 15(1), 38-50. https://doi.org/10.2478/ijpeat-2013-0007.
  60. Singh, B., Sihag, P., Tomar, A. and Sehgal, A. (2019), "Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches". J. Mater. Eng. Struct., 6(4), 583-592.
  61. Taherkhani, H. (2016), "Investigating the properties of asphalt concrete containing glass fibers and nanoclay". Civil Eng. Infrastruct. J., 49(1), 45-58. https://dx.doi.org/10.7508/ceij.2016.01.004.
  62. Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques". Arab. J. Sci. Eng., 46(5), 4951-4969. https://doi.org/10.1007/s13369-020-05314-8.
  63. Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021a), "Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber", Int. J. Pavement Res. Technol., 1-20. https://doi.org/10.1007/s42947-021-00094-2.
  64. Upadhya, A., Thakur, M.S., Pandhian, S.M. and Tayal, S., (2021b), "Estimation of marshall stability of asphalt concrete mix using neural network and M5P tree", Comput. Technol. Mater. Sci., 1, 223-236. https://doi.org/10.1201/9781003121954-11.
  65. Upadhyay, S., Upadhya, A., Salehi, W. and Gupta, G. (2021c), "The medical aspects of EMI effect on patients implanted with pacemakers", Proceedings of the 2nd International Conference on Aspects of Materials Science and Engineering, Chandigarh, India, March. https://doi.org/10.1016/j.matpr.2021.01.826.
  66. Vo, H.V., Park, D.W., Seo, W.J. and Yoo, B.S., (2017)," "Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: Thermal conductivity improvement", J. Mater. Civil Eng., 29(1), 04016176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001675.
  67. Wang, W., Cheng, Y., Zhou, P., Tan, G., Wang, H. and Liu, H. (2019), "Performance evaluation of styrene butadiene styrene modified stone mastic asphalt with basalt fiber using different compaction methods", Polymers, 11(6), 1006. https://doi.org/10.3390/polym11061006.
  68. Xiao, F., Amirkhanian, S. and Juang, C.H. (2009), "Prediction of fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement using artificial neural networks", J. Mater. Civil Eng., 21(6), 253-261. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:6(253).
  69. Yang, G., Yu, W., Li, Q.J., Wang, K., Peng, Y. and Zhang, A. (2019), "Random forest-based pavement surface friction prediction using high-resolution 3D image data". J. Test. Eval., 49(2), 1141-1152. https://doi.org/10.1520/JTE20180937.
  70. Yoo, D.Y., Kim, S., Kim, M.J., Kim, D. and Shin, H.O. (2019), "Self healing capability of asphalt concrete with carbon-based materials", J. Mater. Res. Technol., 8(1), 827-839. https://doi.org/10.1016/j.jmrt.2018.07.001.
  71. Yu, X. and Sun, L. (2010), "Anti-cracking ability of asphalt mixture added with polyester fiber", Proceeding of the 7th International Conference on Traffic and Transportation Studies (ICTTS) 2010, Kunming, China, August. https://doi.org/10.1061/41123(383)134.
  72. Yu, Y., Rashidi, M., Samali, B., Yousefi, A.M. and Wang, W. (2021), "Multi image feature based hierarchical concrete crack identification framework using optimized SVM multi classifiers and D S fusion algorithm for bridge structures", Remote Sens., 13(2), 240. https://doi.org/10.3390/rs13020240.
  73. Zhao, H., Guan, B., Xiong, R. and Zhang, A. (2020), "Investigation of the performance of basalt fiber reinforced asphalt mixture", Appl. Sci., 10(5), 1561. https://doi.org/10.3390/app10051561.
  74. Ziari, H., Aliha, M.R.M., Moniri, A. and Saghafi, Y. (2020), "Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber", Constr. Build. Mater., 230, 117015. https://doi.org/10.1016/j.conbuildmat.2019.117015.