• Title/Summary/Keyword: rainwater

Search Result 495, Processing Time 0.023 seconds

A Sustainability Assessment of the Rainwater Harvesting System for Drinking Water Supply: A Case Study of Cukhe Village, Hanoi, Vietnam

  • Nguyen, Duc Canh;Dao, Anh Dung;Kim, Tschung-Il;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • In Cukhe, a village located in the outskirts of Hanoi, Vietnam, people suffer from a shortage of high-quality water due to an arsenic contaminated supply water resource. We installed catchments, filters and settled tanks in the existing rainwater harvesting facility to improve water quality, and ten portable rainwater tanks to provide good-quality drinking water to the poor households and kindergartens in the dry season. The triple bottom line considerations, as well as the environmental, economic, and social impacts of the rainwater harvesting (RWH) systems are examined. RWH is a sustainable method to obtain good-quality drinking water at low cost and with little energy expenditure. Education of the system also encourages that continuation of the system and expansion can lead into economic prosperity, as the safe drinking water can be sold to the community. Hence, RWH is a unique proposal as sustainable drinking supply water for improving the lives and health of residents in Cukhe and other sites where water supply sources are contaminated.

Restoration of Water Cycle by a Rainwater Management System Applied to Low Impact Development (LID) (저영향개발 (LID)을 적용한 빗물 관리 시스템에 의한 물 순환 복원)

  • Lee, Dong Chan
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.130-133
    • /
    • 2016
  • The increase in impervious surfaces due to urban development has caused a groundwater drawdown through the reduction of underground infiltration, flood disaster due to increased rainfall runoff and environmental pollution in higher pollutant concentrations of first flush rainwater. As an alternative to these problems, the needs of low impact development (LID) techniques is increasing in urban areas. In this study, the restoration efficiency of water cycle was assessed at a residential site development applied with the LID rainwater management system. The results of monitoring the water cycling showed that the efficiency of water cycle of LID rainwater management system was improved 41% more than that of conventional methods.

Climate Change Adaptation Strategy by Multipurpose, Proactive Rainwater Management and Case Studies in Korea (다목적이고 적극적인 빗물관리에 의한 기후변화 적응방안과 국내 사례)

  • Han, Mooyoung;Mun, Jungsoo;Kim, Tschungil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.223-230
    • /
    • 2009
  • Most urban water management systems are becoming vulnerable to flooding and drought due to the climate change (CC), urbanization and energy shortage. Despite of poor water management circumstances caused by extremely uneven annual rainfall and hilly terrain, traditionally we have made a sound and sustainable life based on our own philosophy and technologies which copes with our rigid environment. In this study a new paradigm of rainwater management is suggested and multipurpose and creative rainwater harvesting and management (RWHM) systems are introduced providing several case studies such as rainfall storage drainage (RSD) system, rainwater infiltration facilities and star city RWHM system. This new RWHM paradigm leads Seoul Metropolitan Government (SMG) in the Republic of Korea to change regulations and politics for the integrated RWHM. Finally, RWHM is expected to improve the safety, efficiency, energy consumption of urban water infrastructure, to reduce urban heat island phenomenon and, furthermore, to contribute in finding solutions for worldwide water issues and to adapt CC.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

Statistical Analysis of Ion Components in Rainwater (濕性大氣成分에 對한 統計的解析)

  • 李敏熙;韓義正;元良洙;辛燦基
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.41-54
    • /
    • 1986
  • Methods used for averaging PH's of rainwater and site representation have been studied, Statistical analysis was attempted regarding effects of ionic components on PH's utilizing 847 data altogether obtained in two years, 1984 and 1985. The outcome of the study may be assumarized as follows: 1. Methods for Averaging PH Volume weighted method is considered to be acceptable providing that precipitation is measured at the same time when the samples are taken. Without precipitation data a simple averaging method should be the next choice. 2. Site Representation A statistical method used for optimizing a monitoring newtork was applied using the data collected. Because of a limited number of data, no discernible conclusion can be reached suggesting that the method can serve as a good guide when the data base becomes more reliable. 3. A good correlation appears to exist betwen conductivities and ionic components in rainwater. It would, therefore, be possible to certain extend to estimate ionic concentrations from conductivity measurements by correlation equations. 4. The acidity of rainwater is effected by $SO_4^{2-}, NO_3^-, Cl^- and NH_4^+ with SO_4^{2-}$ being the most significant as demonstrated by standardized regression analysis.

  • PDF

A Study on Backflow Simulation of Rainwater for Automotive Body (자동차 차체에서 빗물의 역류 모사에 관한 연구)

  • Lee, Jung-Woon;Yun, Jea-Deuk;Park, Sung-Bae;Jung, Yoong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.323-330
    • /
    • 2011
  • Large number of part design such as for aircraft and automotive development is preceded by functional or sectional design groups for efficiency. With the assembly development of large number of parts, interferences and gaps can be found when the parts and sub-assemblies by those design groups are to be assembled. When rainwater come into the space among parts and is not be drained sufficiently, rainwater within the structure can backflow to gaps or unexpected outlets, which may cause severe problems of part corrosion and electric shock. This research has developed a method and a program to simulate backflow of rainwater within space among parts, which can find unexpected outlets and gaps as in real situation. The developed program can not only simulate up and downstream of liquid, but also the flow with multiple channels of division and joining. The developed method can also be applied to aircraft and ship design process.

The Study on the Effect of Exchanging Water Supply on the Rainwater in Closet of Detached House (주택 대변기용 상수에 대한 우수대체 효과에 따른 연구)

  • Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.209-214
    • /
    • 2009
  • The purpose of this study is to investigate the effect exchanging water supply on the' rainwater in detached house. It is difficult to decide water supply amount for a closet in detached house, Therefore, to obtain water supply for closet in detached house, it used regression equation using 1,569 data of frequency of used closet and during 120 days. In detached house, the frequency of used closet is 14.6 times/day and water supply amount is $219 {\ell}/day$. The optimum rainwater tank size which is decided by regression equation and using weather data is $8.5\;m^3$. The effect exchanging water supply on the rainwater in detached house is up 50%.

Feasibility Analysis on the Application of Eco-friendly Prefabricated Rainwater Detention System in Grit Chamber and Permanent Pond by the Two-dimensional Diffusion-wave Analysis Model (2차원 확산파 해석모형을 통한 침사지겸 저류지의 친환경 조립식 빗물침투저류시설 적용 타당성 분석)

  • Kim, Ho-jin;Choi, Hee-Yong;Lee, Tae-Gyu;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.185-186
    • /
    • 2022
  • In this study, a numerical analysis was conducted using a two-dimensional diffusion-wave analysis model to analyze the validity about the application of eco-friendly prefabricated rainwater detention system in grit chamber and permanent pond. As a result of the analysis, it is confirmed that the flood prevention effect, such as a decrease in peak flow rate and a delay in peak time, is excellent, so it is considered reasonable to apply eco-friendly prefabricated rainwater detention system in grit chamber and permanent pond.

  • PDF

Performance Evaluation of Eco-Friendly Prefabricated Rainwater Permeable Detention Block Structure (친환경 조립식 빗물침투저류블록 구조체의 성능검토)

  • Jung, YoungWoong;Ju, SeungJin;Kim, Hojin;Lee, Taegyu;Choi, Heeyong;Ryu, Jungrim;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.299-300
    • /
    • 2023
  • In this study, the performance evaluation and structural safety of rainwater permeation detention block were analyzed. As a result, the compressive strength (19.3 MPa), flexural strength (5.2 MPa), and permeability coefficient (2.0 mm/s) of the eco-friendly prefabricated rainwater permeable detention block satisfied the KS F 4419 and SPS-KCIC0001-0703 and it was confirmed sufficient safety even under maximum load.

  • PDF

Development of Inundation Flooding Simulation Program for Selecting Optimum Installation Site for Rainwater Infiltration Detention Block (빗물침투저류블록의 설치 최적지 선정을 위한 침수범람 시뮬레이션 프로그램의 개발)

  • Kim, Seongpyo;Lee, Taegyo;Ryu, Jungrim;Park seonmee;Choi, Heeyong;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.129-130
    • /
    • 2023
  • This study proposes rainwater infiltration retention blocks as a solution to the flooding problems caused by recent climate change and developed a flood prediction simulation program to select the optimal site for installing rainwater infiltration retention blocks that can minimize damage from floods. By applying the existing 2D flood analysis model G2D and adding a reservoir function, the volume of water before and after installation can be determined through simulation results.

  • PDF