• Title/Summary/Keyword: rainfall-runoff

Search Result 1,752, Processing Time 0.027 seconds

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

A Study of the Variation of Runoff Characteristics Depending upon Installation of the Groundwater Recharge Facilities (인공함양시설 설치에 따른 유출특성 변화에 관한 연구)

  • Choi, Gye-Woon;Kim, Young-Kyu;Jeoung, Kee-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.27-34
    • /
    • 2004
  • In this paper, in order to analyse the variation of runoff characteristics depending upon installation of the groundwater recharge facilities, the experiment basin was prepared and the ratio of infiltration and runoff volume were observed in the rainfall events. For the rainfall analysis, 4 types of rainfall events were examined during July 11${\sim}$July 17, 2004. The results show that the mean ratio of infiltration was 89.39% and the mean ratio of runoff was 10.61%. For the artificial rainfall events, which are in the range of rainfall intensities between 60mm/hr and 100mm/hr, all the rainfall volume was infiltrated through the groundwater recharging basin. However, it is necessary to be careful for the long term rainfall, the runoff can be occurred based on the groundwater table.

Evaluation of the Applicability of a Distributed Model at the Downstream of Dam (댐 하류 지점에 대한 분포형 모형의 적용성 평가)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.703-713
    • /
    • 2009
  • Dam has very important roles in both water use and flood control. Dam release and runoff from rainfall affect directly to the flood control at the downstream of dam during heavy storm especially. This study evaluates the applicability of a distributed model by applying the GRM (Grid based Rainfall-runoff Model) based on HyGIS (Hydro Geographic Information System) environment to runoff modeling at the downstream of dam where the discharge from dam and rainfall affect simultaneously. In order to do this, Yeoju watershed in Han River basin is selected. Rainfall data and discharge from Chungju regulation dam and Hoengseong dam are applied to runoff simulation. The modeling results are verified with Yeoju water level station, and they show good agreement with observed hydrographs. And this study shows that GRM is able to simulate appropriately the effect of dam discharge and rainfall on watershed runoff.

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

Estimation of Rainfall-runoff Erosivity Using Modified Institute of Agricultural Sciences Index (수정 IAS 지수를 이용한 강우침식인자 추정)

  • Lee, Joon-Hak;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.619-628
    • /
    • 2011
  • The purpose of this study is to evaluate the existing method of calculating rainfall-runoff erosivity using monthly precipitation, such as Fournier's index, modified Fournier's index, IAS (Institute of Agricultural Sciences) index, etc., and to present more reasonable regression model based on monthly rainfall data in Korea. This study introduced a new simplified method of calculating rainfall-runoff erosivity based on monthly precipitation, called by modified IAS index. It was expanded form IAS index which is the simple calculation method by summing up the rainfall amount of two months with maximum amount. Monthly precipitation and annual rainfall-runoff erosivity at 21 weather stations for over 25 years were used to analyze correlation relationship and regression model. The result shows that modified IAS index is the more reasonable parameter for estimating rainfall-runoff erosivity of the middle-western and south-western regions in Korea.

The Study on Development and Verification of Rainfall-Runoff Simulator for LID Technology Verification (LID 기술의 효율성 검증을 위한 강우-유출 모의장치 개발 및 검증실험에 관한 연구)

  • Jang, Young Su;Kim, Mi Eun;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.513-522
    • /
    • 2014
  • Climate change and urbanization have affected a increase of peak discharge and water pollution etc. In a view of these aspects, the LID(Low Impact Development) technology has been highlighted as one of adjustable control measures to mimic predevelopment hydrologic condition. Many LID technologies have developed, but there is a lack of studies with verification of LID technology efficiency. Therefore this study developed a rainfall-runoff simulator could be possible to verify LID technology efficiency. Using this simulator, this study has experimented the rainfall verification through the rainfall distribution experiment and the experiment to show the relation between inflow and effective rainfall in order to sprinkle the equal rainfall in each unit bed. As a result, the study defined the relation between allowable discharge range and RPM by nozzle types and verified the hydrologic cycle such as the relation between infiltration rate, surface runoff and subsurface runoff at pervious area and impervious area through the rainfall-runoff experiment.

Direct Runoff Simulation using CN Regression Equation for Bocheong Stream (유출곡선지수 회귀식을 이용한 보청천유역의 직접유출 모의연구)

  • Kwak, Jae Won;Kim, Soo Jun;Yin, Shan hua;Kim, Hung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.590-597
    • /
    • 2010
  • NRCS Curve Number (CN) method is widely used for practical purposes in the field by engineers and researchers to calculate direct runoff from total rainfall. However, CN is obtained from antecedent moisture condition and soil characteristics and so it has some problems due to its uncertainty. Therefore this study estimated CN of a watershed using asymptotic CN method which can estimate CN by rainfall and runoff data and compared the result with representative CN given by WAMIS. And we performed runoff simulation for rainy season of Bocheong stream by CN regression equation. From the result, we showed that it could be more reasonable to simulate direct runoff using watershed CN regression equation than WAMIS CN. Furthermore, we knew that the equation is more sensitive to small rainfall event.

Analysis of Spatical Distribution of Surface Runoff in Seoul City using L-THIA: Case Study on Event at July 27, 2011 (L-THIA를 이용한 서울특별시 유출량 공간적 분석: 2011년 7월 27일 강우를 중심으로)

  • Jeon, Ji-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.171-183
    • /
    • 2011
  • Temporal and spatical surface runoff by heavy rainfall during 25~28 July, 2011 causing urban flooding at Seoul were analyzed using Long-Term Hydrologic Impact Assessment (L-THIA). L-THIA was calibrated for 1988~1997 and validated for 1998~2007 using monthly observed data at Hangangseoul watershed which covers 90 % of Seoul city. As a results of calibration and validation of L-THIA at Hangangseoul watershed, Nash-Sutcliffe coefficients were 0.99 for calibration and 0.99 for validation. The simulated values were good agreement with observed data and both calibrated and validated levels were "very good" based on calibration criteria. The calibrated curve number (CN) values of residential and other urban area represented 87 % and 93 % of impervious area, respectively, which were maximum percentage of impervious area. As a result of L-THIA application at Seoul city during 25~28 July, 2011, most of rainfall (54 %, 287.49 mm) and surface runoff (65 %, 247.32) were generated at 27 July, 2011 and a significant amount of rainfall and surface runoff were occurred at southeastern Seoul city. As a result of bi-hourly spatial and temporal analysis during 27 July, 2011, surface runoff during 2:00~4:00 and 8:00~10:00 were much higher than those during other times and surface runoff located at Seocho-gu during 6:00~8:00 represented maximum value with maximum rainfall intensity which caused landslide from Umyun mountain.