DOI QR코드

DOI QR Code

Estimation of Rainfall-runoff Erosivity Using Modified Institute of Agricultural Sciences Index

수정 IAS 지수를 이용한 강우침식인자 추정

  • Lee, Joon-Hak (School of Civil and Environmental Engineering, Yonsei University) ;
  • Oh, Kyoung-Doo (Dept. of Civil Engineering and Environmental Sciences, Korea Military Academy) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei University)
  • 이준학 (연세대학교 사회환경시스템공학부) ;
  • 오경두 (육군사관학교 건설환경학과) ;
  • 허준행 (연세대학교 사회환경시스템공학부)
  • Received : 2011.01.18
  • Accepted : 2011.06.28
  • Published : 2011.08.31

Abstract

The purpose of this study is to evaluate the existing method of calculating rainfall-runoff erosivity using monthly precipitation, such as Fournier's index, modified Fournier's index, IAS (Institute of Agricultural Sciences) index, etc., and to present more reasonable regression model based on monthly rainfall data in Korea. This study introduced a new simplified method of calculating rainfall-runoff erosivity based on monthly precipitation, called by modified IAS index. It was expanded form IAS index which is the simple calculation method by summing up the rainfall amount of two months with maximum amount. Monthly precipitation and annual rainfall-runoff erosivity at 21 weather stations for over 25 years were used to analyze correlation relationship and regression model. The result shows that modified IAS index is the more reasonable parameter for estimating rainfall-runoff erosivity of the middle-western and south-western regions in Korea.

본 연구의 목적은 월강우량을 이용하여 강우침식인자를 추정하는 기존의 방법인, Fournier 지수, modified Fournier 지수, IAS (Institute of Agricultural Sciences) 지수 등의 적용성을 확인하고 더 합리적인 월강우량 기반의 강우침식인자 추정모델을 제시하기 위한 것이다. 본 연구에서는 월강우량 기반의 수정 IAS 지수를 새롭게 제안하였다. 이것은 연중가장 비가 많이 내린 두 달의 강우량의 합으로써 강우침식인자를 추정하는 기존의 IAS 지수의 개념을 확장한 것이다. 본 연구에서는 25년 이상의 21개 지점에 대한 월강우량 및 연 강우침식인자를 토대로 각 추정방법에 대한 상관분석 및 회귀분석을 실시하였다. 그 결과 수정IAS 지수가 기존의 연강수량 및 월강우량을 이용한 추정방법 보다 우리나라 중서부 및 남서부 지역의 강우침식인자의 변동을 잘 나타내는 합리적인 지표임을 알 수 있었다.

Keywords

References

  1. 고문환, 신제성 (1979). 강우특성 분석. 시험연구보고서(토비편), pp. 265-270.
  2. 박성우(1976). "토양손실에 미치는 각 지방별 강우에너지 분석." 한국토양비료학회지, 제9권, 제1호, pp. 47-54
  3. 박정환, 우효섭, 편종근, 김광일(2000). "토양유실공식의 강우침식도 분포에 관한 연구." 한국수자원학회 논문집, 한국수자원학회, 제33권, 제5호, pp. 603-610.
  4. 신계종(1999). 지형공간정보체계를 이용한 유역의 토양유실분석. 박사학위논문, 강원대학교, p. 22.
  5. 신유(2010). 분단위 강우자료를 이용한 범용토양유실공식(USLE)의 강우침식인자R 산정, 석사학위논문, 전주대학교, pp. 50-78.
  6. 신제성, 고문환, 임정남(1983). "토양유실예측을 위한 강우인자의 추정." 한국토양비료학회지, 제16권, 제2호, pp. 106-111.
  7. 이근상, 황의호(2006). "GIS기반 수변구역의 토사유실영향 분석." 대한토목학회 논문집, 대한토목학회, 제26권, 제2D호, pp. 335-340.
  8. 이준학, 정영훈, 오경두, 허준행(2010). "월강우량 기반의 강우침식인자 산정방법 평가." 대한토목학회 2010년도 정기학술대회, 대한토목학회, pp. 241-244.
  9. 이준학, 정영훈, 허준행(2008). "RUSLE의 강우침식도 추정에 관한 연구." 2008년 한국수자원학회 학술발표회, 한국수자원학회, pp. 1324-1328.
  10. 이준학(2010). "Modified Fournier 지수를 이용한 동해안 지역의 강우침식인자 추정." 2010년 대한환경공학회 추계학술대회, 대한환경공학회, p. 557.
  11. 정영상, 권영기, 임형식, 하상건, 양재의(1999). "강원도경사지 토양유실 예측용 신USLE의 적용을 위한 강수인자와 토양 침식성인자의 검토." 한국토양비료학회지, 제32권, 제1호, pp. 31-38.
  12. 정필균 고문환, 임정남, 윤기대, 최대웅(1983). "토양유실량 예측을 위한 강우인자의 분석." 한국토양비료학회지, 제16권, 제2호, pp. 112-118.
  13. 최진규, 구자웅, 손재권(1998). "토양유실량예측공식 USLE 적용과 단위변환." 한국토양비료학회지, 제31권, 제3호, pp. 301-308.
  14. Andrade, O., Kappas, M., and Erasmi, S. (2010). "Assessment of erosion hazard in Torres Municipality of Lara State (Venenzuela) based on GIS." Interciencia, Vol. 35, No. 5, pp. 348-356.
  15. Arnoldus, H.M.J. (1980). "An approximation of the rainfall factor in the universal soil loss equation." Assessment of Erosion, Edited by De Boodt, M., and Gabriels, D., John Wiley and Sons, Chichester, pp. 127-132.
  16. Diodato, N. (2004). "Estimating RUSLE's rainfall factor in the part of Italy with a Mediterranean rainfall regime." Hydrology & Earth System Science, Vol. 8, No. 1, pp. 103-107. https://doi.org/10.5194/hess-8-103-2004
  17. Fournier, F. (1960). Climat et Erosion. Presses Universitaires de France, Paris
  18. Hu, Q., Gantzer, C.J., Jung, P., and Lee, B. (2000). "Rainfall erosivity in the Republic of Korea." Journal of Soil and Water Conservation, Vol. 55, No. 2, pp. 115-120.
  19. Lastoria, B., Miserocchi, F., Lanciani, A., and Monacelli, G. (2008). "An Estimated Erosion Map for the Aterno-Pescara River Basin." European Water, 21/22, pp. 29-39.
  20. Lo, A., EI-Swaify, S.A., Dangler, E.W., and Shinshiro, L. (1985). "Effectiveness of EI30 as an erosivity index in Hawaii." Soil Erosion and Conservation, Edited by EI-Swaify, S.A., Moldenhauer, W.C., and Lo, A., Soil Conservation Society of America., Ankeny, Iowa, pp. 384-392.
  21. Loureiro, N.S., and Coutinho, M.A. (2001). "A new procedure to estimate the RUSLE EI30 index based on monthly rainfall data and applied the Algarve region, Portugal." Journal of Hydrology, Vol. 250, pp. 12-18. https://doi.org/10.1016/S0022-1694(01)00387-0
  22. Munka, C., Cruz, G., and Caffera, R.M. (2007). "Long term variation in rainfall erosivity in Uruguay: A prelimary Fournier approach." Geo Journal, Vol. 70, pp. 257-262.
  23. Petkovsek, G., and Mikos, M. (2004). "Estimating the R factor from daily rainfall data in the sub-Mediterranean climate of southwest Slovenia." Hydrological Sciences Journal, Vol. 49, No. 5, pp. 869-877.
  24. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997). Predicting Soil Erosion by Water: A guide to conservation planning with RUSLE. USDA Agriculture Handbook, No. 703, Washington, D.C.
  25. Renard, K.G., and Freimund, J.R. (1994). "Using monthly precipitation data to estimate the R-factor in the revised USLE." Journal of Hydrology, Vol. 157, pp. 287-306. https://doi.org/10.1016/0022-1694(94)90110-4
  26. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. USDA Agriculture Handbook, No. 537, Washington, D.C.

Cited by

  1. Estimation of Rainfall Erosivity in North Korea using Modified Institute of Agricultural Sciences vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1004