• Title/Summary/Keyword: rain-runoff

Search Result 206, Processing Time 0.029 seconds

Effects of Rain Garden on Reduction of Subsurface Runoff and Peak Flow (레인가든이 지하유출 및 첨두유량 감소에 미치는 효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.69-79
    • /
    • 2011
  • This study assessed the subsurface runoff and peak flow reduction in rain gardens. The results showed that the highest water retention was found in rain garden mesocosms in which Rhododendron lateritium and Zoysia japonica were planted, followed by mesocosms in which either R. lateritium or Z. japonica was planted, and the lowest water retention rate was found in non-vegetated control treatment mesocosms(${\alpha}$ < 0.05). Although higher rainfall intensity caused a decrease of peak flow reduction in both vegetated and non-vegetated treatments, peak flow reduction was the greatest in mesocosms with mixed plants. A rain garden can be an effective tool for environment-friendly stormwater management and improving ecological functions in urban areas. Depending on the purpose such as delaying runoff or increasing infiltration, various plant types should be considered for rain garden designing.

A Field Study to Evaluate Greenroof Runoff Reduction and Delay (옥상녹화의 우수유출량 저감효과에 관한 연구 -토심 및 식생유무를 중심으로-)

  • Lee, Dong-Kun;Oh, Seung-Hwan;Yoon, So-Won;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.117-122
    • /
    • 2006
  • The objective of this study is to analyze the greenroof runoff quantity and delay. The experimental districts, have different soil thickness and vegetation, had installed. A measurement was conducted in Seoul University to investigate the runoff quantity and delay of the greenroof. The measurement point of runoff quality data were 8, located next to each experimental district. Also, the precipitation was measured by rain gauges(# RG2). The experimental investigation lasted from 21th July to 4th December, a total of 137 days. The results showed that the greenroof can contribute runoff retention and delay by soil, but the intensity of actual rain event affected the runoff reduction and delay. Overall, when was the rainy season, percent rainfall retention ranged 17.5% and runoff flow was delayed for 1-3 hours. But on the other hand, when was the typical rain event, percent rainfall retention ranged over 90% and runoff flow was delayed for 1-11 hours. In the result, the greenroof had the greatest runoff retention and delay, while for the typical rain event.

The Effect of Impermeable Surface and Rainwater Infiltration Facilities on the Runoff pH of Housing Complexes (빗물 유출면 및 빗물 침투시설이 주거단지 유출빗물의 pH에 미치는 영향)

  • Hyun, Kyoung-Hak;Choi, Joung-Joo;Choung, Youn-Kyoo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • In order to examine the effect of impermeable surface (rooftop, outdoor parking lot) and rainwater infiltration facilities on runoff pH, pH was measured. pH measurement spots were splash blocks accepted roof runoff of 3 sites, infiltration boxes and trenches accepted parking lot runoff and plastic rainwater harvesting facility accepted roof runoff. These measurements were operated at 3 housing complexes from 2006 to 2009. The rainwater runoff pH was influenced by the quality of the runoff surface material (concrete), the age of the building, waterproofing methods according to each housing site, antecedent rainfall conditions and others. Rain garden, infiltration boxes and trenches decreased the alkalinity of runoff by detention and infiltrating the roof and outdoor parking lot runoff. These results mean that decentralized rainwater management facilities of housing complexes can reduce effect on the outskirt aquatic ecosystem by the accumulation of substances causing pH rising in the infiltration facilities and rain garden.

Trace elements in the rainwater runoff of the urban catchment of Guwahati, India

  • Devi, Upama;Bhattacharyya, Krishna G.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Rainwater runoff has been identified as a significant source of contaminants having tremendous impact on the receiving aquatic environment. In the present study, trace element transport by the surface runoff in the predominantly urban catchment of Guwahati city, India was monitored with a view to determine the chemical denudation rates of the land surface. A number of trace metals, namely Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the runoff after 70 major rain events within the city. Cadmium was found to be the least abundant metal and Iron was the most abundant metal in the runoff. The results are interpreted on the basis of temporal and spatial variations in their concentrations. These variations are quite large in some of the events and reflect changes in the local environmental setting, differences in water utilization, variations in runoff volume, gradient and quality.

Evaluation on the environmental effects of rain garden treating roof stormwater runoff (지붕 강우유출수를 처리하는 빗물정원의 환경적 효과 평가)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 2016
  • In this research, the environmental effects of rain garden when applied to a stormwater runoff originated from a rooftop were evaluated. The rain garden that was utilized as LID represents less than 1% of the catchment area that it drains. Storm event monitoring was conducted from March 2012 to August 2014 on a total of 19 storm events. In the 19 storm events that was monitored only 32% produced an outflow which has a mean rainfall characteristic of approximately 25 mm. With the application of rain garden, hydrologic improvement was observed as the facility exhibit a delay and reduction in the production of runoff and peak flows as the rainfall progresses. Furthermore, in terms of pollutant reduction, it was observe that the rain garden showed a generally satisfactory performance in reducing pollutants. In addition to this, the rain garden also has additional attributes that adds to the aesthetic appeal of the surrounding environment as well as in the lives of the people. The findings of this research will help in the further improvement and reinforcement of LID designs.

Runoff Characteristics of Heavy Metals from a Parking Lot by Rainfall (주차장 지역의 강우에 의한 Pb와 Zn의 유출 특성)

  • Im, Jong-Kwon;Son, Hyun-Seok;Kim, Sung-Keun;Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.926-933
    • /
    • 2010
  • Runoff from a parking lot can be highly contaminated nonpoint source due to the impermeability of rainwater. This study presented runoff characteristics of heavy metals especially Zn and Pb from a parking lot during total 17 rain events. Monitoring results showed the first flush phenomenon within 30 min was observed in all rain events, but the event mean concentration (EMC) did not clearly show the characteristics of runoff. The ranges of Pb and Zn was $4{\sim}201{\mu}g/L$ and $131{\sim}672{\mu}g/L$, respectively, and the runoff mass of Zn and Pb was highly to related with the flow rate, and runoff coefficient of rain. The runoff mass of Zn was greater than that of Pb in all events. The runoff mass of Pb was highly correlated with the amount of TSS, and TSS and DOC were was related with the mass of Zn. This result implies that Pb and Zn are mainly existed in the particulate form. The results can be used to as meaningful data in the management of nonpoint source, and in the management in the runoff catchment in the parking lot.

Optimal Rain Gauge Density and Sub-basin Size for SWAT Model Application (SWAT 모형의 적용을 위한 적정 강우계밀도의 추정)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.415-425
    • /
    • 2005
  • This study estimated the optimal rain gauge density and sub-basin size for the application of a daily rainfall-runoff analysis model called SWAT (Soil and Water Assessment Tool). Simulated rainfall data using a WGR multi-dimensional precipitation model (Waymire et al., 1984) were applied to SWAT for runoff estimation, and then the runoff error was analyzed with respect to various rain gauge density and sub-basin size. As results of the study, we could find that the optimal sub-basin size and the representative area of one rain gauge are similar to be about $80km^2$ for the Yong-Dam dam basin.

EFFCTS OF TILLAGE SYSTEMS ON THE QUALITY OF RUNOFF FROM SLUDGE-AMENDED SOILS

  • Mostaghimi, Saied;Bruggeman, Adriana C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.984-993
    • /
    • 1993
  • land application of sewage sludge requires careful monitoring because of its potential for contamination of surface water and groundwater. A rainfall simulator was used to investigated the effects of freshly applied sludge on runoff of sediment and nutrients from agricultural crop lands. Rain was applied to 16 experimental field plots. A three run sequence was used to simulate different initial moisture conditions. Runoff, sediment and nutrient losses were monitored at the base of each plot during the simulated rainfall events. Sludge was surface applied and incorporated at conventionally -tilled plots and surface applied at no-till plots, at rates of 0, 75, 150 kg-N/ha. No-till practices greatly reduced runoff, sediment , and nutrient losses form the sludge treated plots, relative to the conventional tillage practices. Incorporation of the sludge was effective in reducing nutrient yields at the conventionally-tilled plots. This effect was more pronounced during the third rain torm, with wet initial conditions. Peak loadings of nutrients appeared during the rainstorm with wet initial conditions.

  • PDF

Runoff Pattern in Upland Soils with Various Soil Texture and Slope at Torrential Rainfall Events (집중강우시 우리나라 밭토양의 토성과 경사에 따른 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon;Park, Chan-Won;Lee, Hyun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • When overland flow water is small and slow, it moves down a stream slowly and we use it as available resource. However, it could not only be good for nothing but arouse an inundation if a lot of runoff pour down to stream at a torrential rain. So it is important to know how much water to flow out and be stored in soil and on land in order to predict a flood and conserve soil and water quality. We intended to develop the prediction model of runoff in upland at a torrential rain and conducted lysimeter study in soybean cultivation and bare soil with 3 slopeness, 3 slope length and 5 soil texture from 1985 to 1991. The data of rainfall and runoff were used when daily rainfall was over 80 mm, the level of torrential rain warning. Minimum rainfall occurring runoff (MROR) was dependent on surface coverage and slope length. However soil texture and slopeness had a little influence on MROR. Runoff after MROR increased in proportion to precipitation which depended on surface coverage, soil texture and slope. Runoff ratio was larger in fine texture and bare soil than coarse soil and soybean coverage. Runoff ratio was in proportion to a square root of slope angle(radian) and reduced with slope length to converge a certain value. From these basis, we developed the prediction model following as $$Runoff(mm)=a(s^{0.5}+l^b)(Rainfall(mm)-80(1-e^{-bl}))$$ where a is a coefficient relevant soil hydraulic properties, b is a surface coverage coefficient, s is a slope angle and l is a slope length. The coefficient a was 0.5 in sandy loam and 0.6 in clay, and b was 0.06 in bare soil and 0.5 in soybean cultivation.

Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system (하이브리드 빗물정원 시스템에서의 비점오염물질 및 강우유출수 이송 특성)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Geronimo, Franz Kevin F.;Alihan, Jawara Christian P.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • In this research, a pilot scale hybrid rain garden system was developed in order to investigate the efficiency in the different components of the hybrid rain garden system and at the same time evaluate the initial efficiency of the system in treating urban stormwater runoff prior to its actual use in the field. Experimental runs were conducted using synthetic runoff having target concentrations similar to that of the typical runoff characteristics found in different countries and in Korea. With the employment of the hybrid rain garden system, hydrologic improvement was observed as the system demonstrates an approximately 95% reduction in the influent runoff volume with 80% retained in the system, and 15% recharged to groundwater. The reduction was contributed by the retention capabilities of ST and infiltration capabilities in PB and IT. With the combined mechanisms such as filtration-infiltration, biological uptake from plants and soil and phytoremediation that are incorporated in PB and IT, the system effectively reduces the amount of pollutant concentration wherein the initial mean removal efficiency for TSS is 87%, while an approximate mean removal efficiency of 76%, 46% and 56% was observed in terms of organics, nutrients and heavy metal, respectively. With these findings, the research helps in the further improvement, innovation and optimization of rain garden systems and other facilities as well.