• Title/Summary/Keyword: railway vibration

Search Result 959, Processing Time 0.027 seconds

Analysis of Vibration Transfer Characteristics of Approach Bridges for an Elevated Railroad Station (철도선하역사 접속교량의 진동전달 특성 분석)

  • Choi, Sanghyun;Kim, Jin-Ho;Yoo, Yong;Kwon, Se-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2911-2916
    • /
    • 2015
  • The elevated railway station, above which a train is passing, is vulnerable to noise and vibration compared to other station types. To better identify the vibration characteristics of the elevated railway station, the transferred vibration from approach bridges should be analyzed. In this paper, through experiments and simulations, the transfer characteristics of the vibration from approach bridges is analyzed. The study structure is Geomgok station and the anaylses are conducted using ABAQUS three dimensional numerical model. To identify the change in the transfer characteristics for various bearing types, the analyses are performed considering mechanical properties of bearing for railway bridges. The measurement is performed using the accelerometers attached to the approach bridges and the station structure along the passing path of trains.

Analysis on the Dynamic Behavior according to Suspension Structure of the Urban Railway Vehicle (전동차 현가구조에 따른 동적거동특성 분석)

  • Hur, Hyun-Moo;Noh, Hak Rak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.617-623
    • /
    • 2020
  • Urban railroad vehicles carry many passengers and are the core of an urban railroad transportation system. Therefore, the dynamic performance of the vehicle must be ensured. Dynamic behaviors such as the vibration and ride comfort of railway vehicles are affected by the structure of the suspension system. We analyzed the dynamic behavior of a railway vehicle according to the suspension system of an urban railway vehicle, which is mainly operated in Korea. For two types of vehicles with different suspension structures, the vibration of the vehicles on railway tracks was measured, and dynamic behavior characteristics such as vibration, ride, and vibration reduction rate were analyzed. The result of the test shows that the vibration performance of the body is superior to that of B-bogie in the lateral direction and that of A-bogie in the vertical direction. Overall, the ride quality of the A-bogie car is superior to that of B-bogie. When analyzing the vibration attenuation rate of primary suspension system, the vibration attenuation performance of B-bogie with coil spring was superior to that of A-bogie with a conical rubber spring. The secondary suspension system has better vibration attenuation performance for A-bogie with air springs compared to coil springs.

A study on urban transit vibration characteristics for curved concrete track (도시철도 곡선구간 콘크리트궤도 진동특성에 관한 연구)

  • Kim, Kyoung-Min;Kim, Jin-Ho;Lee, Kwang-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.442-445
    • /
    • 2011
  • Concrete track on the new railway lines of the existing roads are built on high ground, or less than 400m radius of the sharp curve sectors will occur. sharp curve sectors the rail and wheel friction, stick-slip due to the band of 1,000Hz or squeal noise occurs from the increase in civil complaints about noise is a real situation. In this study, discussed in previous studies, noise measurements for each radius of concrete track and frequency analysis, followed by the radius of the curve in order to investigate vibration characteristics of urban railway sector sharp curve radius less than 400m and 400m ~ 1,000 m further to the point selected track components(rails, sleepers, ballast) according to the vibration measurements and analysis of the frequency characteristics and the results were derived.

  • PDF

A Study on Derailment Possibility that can Analogize from Vibration and Displacement of Rolling Stocks (철도차량의 진동과 변위로부터 유추할 수 있는 탈선가능성에 관한 연구)

  • Hong, Yong-Ki;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.743-748
    • /
    • 2007
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Especially, a newly developed vehicle that first runs commercially requires necessarily the measurement and evaluation of derailment coefficient for securing the safety of a vehicle while measuring the derailment coefficient in view of securing running safety could be the more important factor than any other factors. In this paper, examined possibility that can forecast derailment possibility to behavior of only vibration and displacement by measuring vibration acceleration and displacement in vehicles that travel actuality rail track, and compares with data of wheel load/lateral force result.

  • PDF

Analysis on the Correlation between the Vibration Characteristics of the Ballast Track and the Parameters in High-Speed Railway Lines (고속철도 자갈도상궤도의 진동특성과 인자와의 상관관계 분석)

  • Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.303-310
    • /
    • 2007
  • In this paper, the correlation between the vibration characteristics of the track components and the parameters affecting the vibration is analysed. To do it, the accelerations of each track component such as rails, sleepers and ballast are measured in Kyong-Bu high-speed railway lines. The RMS values of the measured data are calculated and the corrugation, the track irregularity and the pad stiffness are considered as the parameters in the viewpoint of track. By using the linear regression, the correlation coefficient is calculated to analyse the relationship. The parameter whose correlation coefficient is more than 0.7 is considered as the major one. Also, the 1/3 Octave analysis is calculated to analyse the dominant frequency band of the vibrations of the track components.

  • PDF

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.

A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves (곡선부 통과 차량의 진동특성 및 안전성 평가)

  • Park, Kwang-Soo;Lee, Seung-Il;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

Effects of Wheel Profile on KTX Dynamic Characteristics (차륜답면 형상변화에 따른 KTX의 동특성)

  • 장종기;이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • The running safety of a railway vehicle depends on the design parameters and contact condition between wheel and rail. In this study, the effect of the conicity of wheel tread is analyzed using ADAMS/RAIL software on running situation. Modal analysis shows in 0.6 Hz natural frequency of lateral mode in fully arranged the KTX cars. The excessive vibration of the tail cars occurs in the 17th car as the speed and the stiffness of the secondary suspension increases, and especially for 1/40 conicity of the GV40 wheel. Also, the analysis shows that combination of wheel profile, GV40 for power cars and XP55 for passenger cars can reduce the lateral vibration of the tail cars.

Investigation of the Bridge Vibration and Noise under Passage of the Light Rail Train (경량전철 교량 상부구조의 주행열차하중에 의한 진동 및 소음 분석)

  • Kim, Sung-Il;Yeo, In-Ho;Rhee, In-Kyu;Kim, Sung-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.522-529
    • /
    • 2006
  • Running train is one of the most main factor for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. The noise of railway bridges can be divided into the noise from track-vehicle system and structure-borne noises. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

  • PDF