• Title/Summary/Keyword: railway system model

Search Result 840, Processing Time 0.027 seconds

Design and Implementation of Mathematical Model based Hierarchical Conflict Detection and Resolution (수리모형 기반의 계층적 열차경합관리 설계 및 구현)

  • Kim, Kyung-Min;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.687-694
    • /
    • 2008
  • Given the daily tactical schedule, the purpose of the traffic management system is to develop operating plan that will achieve the stated schedule as best as possible. The operating plan has to be modified during the day because of occurring disturbance(e.g. delay, infrastructure breakdown, etc.) Conflict detection and resolution(CDRS) are aimed for adjusting the distorted schedule to tactical schedule. Our research separate CDRS into two hierarchy modules, line conflict control module and station conflict control module. We define the role of each modules and design the cooperative architecture. We suggest the conflict detection and resolution approach based on mathematical model. These results can be implemented as prototype modules.

  • PDF

Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology (PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용)

  • Wang, Haitao;Min, Byung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • In recent years, with the rapid development of large and medium-sized urban rail transit in China, the total operating mileage of high-speed railway and the total number of EMUs(Electric Multiple Units) are rising. The system complexity of high-speed EMU is constantly increasing, which puts forward higher requirements for the safety of equipment and the efficiency of maintenance.At present, the maintenance mode of high-speed EMU in China still adopts the post maintenance method based on planned maintenance and fault maintenance, which leads to insufficient or excessive maintenance, reduces the efficiency of equipment fault handling, and increases the maintenance cost. Based on the intelligent operation and maintenance technology of PHM(prognostics and health management). This thesis builds an integrated PHM platform of "vehicle system-communication system-ground system" by integrating multi-source heterogeneous data of different scenarios of high-speed EMU, and combines the equipment fault mechanism with artificial intelligence algorithms to build a fault prediction model for traction motors of high-speed EMU.Reliable fault prediction and accurate maintenance shall be carried out in advance to ensure safe and efficient operation of high-speed EMU.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

A Comprehensive Framework for Estimating Pedestrian OD Matrix Using Spatial Information and Integrated Smart Card Data (공간정보와 통합 스마트카드 자료를 활용한 도시철도 역사 보행 기종점 분석 기법 개발)

  • JEONG, Eunbi;YOU, Soyoung Iris;LEE, Jun;KIM, Kyoungtae
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.409-422
    • /
    • 2017
  • TOD (Transit-Oriented Development) is one of the urban structure concentrated on the multifunctional space/district with public transportation system, which is introduced for maintaining sustainable future cities. With such trends, the project of building complex transferring centers located at a urban railway station has widely been spreaded and a comprehensive and systematic analytical framework is required to clarify and readily understand the complicated procedure of estimation with the large scale of the project. By doing so, this study is to develop a comprehensive analytical framework for estimating a pedestrian OD matrix using a spatial information and an integrated smart card data, which is so called a data depository and it has been applied to the Samseong station for the model validation. The proposed analytical framework contributes on providing a chance to possibly extend with digitalized and automated data collection technologies and a BigData mining methods.

A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation (공용중인 NATM 터널의 성능중심 평가체계 연구: 평가모형 개발 및 검증)

  • Moon, Joon-Shik;Kim, Hong-Kyoon;An, Jai-Wook;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.107-120
    • /
    • 2020
  • In a performance-based evaluation of structures in use, the current performance is assessed by summing up the weighting of the evaluation indices for each performance. In this study, to suggest a performance-based evaluation technique for NATM tunnels in use, the performance evaluation indices were derived by examining the characteristics and similarities of each index developed from previous study. The weighting of the evaluation indices was derived by calculating the relative importance of each evaluation indices from the AHP analysis. In order to develop a quantitative evaluation model, grading criteria for each performance index was derived through literature review, and performance evaluation tables for road and railway tunnels were presented. In order to verify the significance of the proposed performance evaluation model, the correlation analysis was performed between each evaluation index and the final evaluation result. In the correlation analysis, the survey data measured through precision safety diagnosis in the tunnel in use was applied. It may be said that the proposed evaluation indices, weighting, criteria and evaluation models for tunnels in use can be applied to the performance-based maintenance system of tunnels.

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

A Study on Standard Construction Process Management System for Prediction of Proper Construction Period of Subsea Tunnel (해저터널 적정 공사기간 예측을 위한 표준공정관리 체계 연구)

  • Bae, Keunwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.4
    • /
    • pp.36-47
    • /
    • 2017
  • As a typical domestic subsea tunnel construction the Gadeok subsea tunnel applying the method of immersed tunnel has been completed and the Boryeong-Taean subsea tunnel is under construction using NATM. The high-speed railway subsea tunnels between the Honam and Jeju are under consideration, and the feasibility of constructing subsea tunnels with Japan and China is also under consideration. However, it is difficult to provide the process plan information for the construction work such as the analysis of the feasibility of the subsea tunnel and the prediction of the proper construction period because there is no case of domestic construction for it applying the shield TBM method. Due to economic and other reasons, government organizations are reluctant to apply the shield TBM, and there is lack of data on the construction process management field using the shield TBM method. Therefore, a standard construction process management system for the subsea tunnel is needed to analyze the feasibility of the subsea tunnel and to predict the proper construction period. By presenting the standard construction process management system of subsea tunnels such as WBS, Network Diagram, and construction period calculation model, I hope to contribute technically and economically to future subsea tunnel projects.

Appropriate Roles of Project Participants for Public Partnership Projects of Railways through the Organizational Behavior Theory (조직행동론을 통해서 본 민간철도 투자사업의 참여자간 갈등유형 및 역할정립 방안에 관한 사례연구)

  • Kim, Byungil;Yun, Sungmin;Han, Seung Heon;Kim, Hyung Hwe
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.839-847
    • /
    • 2008
  • No proper system exists for private investment projects, and efficient project management is not being achieved due to entanglements of management. Recognizing these circumstances, this paper has diagnosed the hard facts that project management organizations and systems are facing, and presented solutions to the factors that are obstructing the establishment of efficient project management system. This paper carried out focus group interviews on the experts who had participated in the Incheon International Airport Railway construction project, using the methodology of an exploratory case study. The results were systematically analyzed according to organizational behavior and causes corresponding to each of the problems were deduced. Private investment projects were divided into task environments and project organizations based on social science methodology and analyzed, and a final improvement plan for each participating organization was presented. An improvement plan was presented, and it was compared with the case study of Incheon bridge construction project, which is recognized as a model of successful project management, and its appropriateness evaluated.

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

A Study on the Life Cycle Cost Analysis of Light Railroad Transit Bridges (경량전철 교량의 생애주기비용 분석에 관한 연구)

  • Lee, Du-Heon;Kim, Kyoon-Tai;An, Dong-Geun;Jun, Jin-Taek;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.384-389
    • /
    • 2006
  • The needs for Light Railroad Transit(LRT) have been increased due to the heavy traffic congestions in large cities like Seoul, Korea. Korean government is seeking the LRT system development (including planning, designing, construction, and maintenance and operations) in terms of public-private-partnership (PPP). At the private sector side, it is crucial to estimate the life cycle cost (LCC) to project the cash flow during the O&M period. Since the most construction and O&M cost of LRT project is at the bridge construction, a cost analysis model and a cost breakdown structures (CBS) on LRT bridges are discussed through in depth literature reviews. Construction and maintenance cost of bridges are collected and analyzed. LCC is analyzed by types of bridge superstructures and historical data of repair and rehabilitation (R&R) is investigated. There have been scarce number of LCC analysis on railway bridges. This research delivers a well-defined CBS and maintenance cost data, which will be a great benefit to the systematic maintenance strategy development for railroad bridges.

  • PDF