• Title/Summary/Keyword: railway maintenance

Search Result 1,065, Processing Time 0.027 seconds

Influence of Vehicle Vibration on Track Geometry Measurement (차량 진동이 궤도 선형 측정에 미치는 영향)

  • Bae, Kyu-Young;Yong, Jae Chul;Kim, Lee-Hyeon;Kwon, Sam-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.644-650
    • /
    • 2016
  • Track maintenance works based on track geometry recordings are essential to enhance the safety and comfort of railway transportation. Usually, the track irregularity has been measured by a special inspection trains which all were imported from abroad. Because the inspection train speed is limited under 160 km/h, it takes a long time to inspect railways and there is difficulty in daytime operation. To solve this problem, we started to develop a track geometry measuring system (TGMS) with measurement speed up to 300 km/h which can be installed in commercial vehicles such as HEMU-430X. In this paper, we introduce a newly developed inertial TGMS and propose two inertial navigation system (INS) algorithms (method A, B) for measuring track geometry. In order to investigate advantage and disadvantage of each algorithm, we performed vibration test of the TGMS, which was simulated by 6-axis shaking table. Through the vibration test, we analyzed the influence of vehicle vibration on the TGMS which will be installed on bogie frame. To the vibration test, two methods satisfied the required accuracy of track geometry measurement under the level of the actual vehicle vibration of HEMU-430X train. Theoretically, method A is sensitive to vehicle vibration than method B. However, HEMU-430X's bogie vibration frequency range is out of interest range of measurement system. Therefore, method A can also apply the HEMU-430X train.

Analysis of the problems in(SMRT) L-CTC and derivation of measures (서울도시철도(SMRT) L-CTC의 문제점 분석 및 해결 방안 도출)

  • Park, Geum-Heui;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1204-1212
    • /
    • 2008
  • This study enables to troubleshoot the problems of the existing dual system with the help of the implementation of totally dualized fault-tolerant system to L-CTC computer and HADAX, and equipments are simplified and systems are modernized with the addition of the control function, as a upgraded LCP control system, to L-CTC computer on the basis of WINDOWS based O/S switched from DOS environment. An error on Microlok, which is aninterlocking apparatus, forwarded to L-CTC computer ensures to handle the false data during the operation of the system. This paper discusses a sure way to prevent the deterioration of (SMRT) L-CYC system and to bolster its stability with formation of the dual system. Additionally, WINDOW based O/S consisting of L-CTC computer leads to simplification and modernization of facilities and enhances maintenance functions offering centralization for branch offices and machine rooms as well.

  • PDF

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.

Numerical Modeling for the Identification of Fouling Layer in Track Ballast Ground (자갈도상 지반에서의 파울링층 식별을 위한 수치해석연구)

  • Go, Gyu-Hyun;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.13-24
    • /
    • 2021
  • Recently, attempts have been made to detect fouling patterns in the ground using Ground Penetrating Radar (GPR) during the maintenance of gravel ballast railway tracks. However, dealing with GPR signal data obtained with a large amount of noise in a site where complex ground conditions are mixed, often depends on the experience of experts, and there are many difficulties in precise analysis. Therefore, in this study, a numerical modeling technique that can quantitatively simulate the GPR signal characteristics according to the degree of fouling of the gravel ballast material was proposed using python-based open-source code gprMax and RSA (Random sequential Absorption) algorithm. To confirm the accuracy of the simulation model, model tests were manufactured and the results were compared to each other. In addition, the identification of the fouling layer in the model test and analysis by various test conditions was evaluated and the results were analyzed.

Damage Analysis of Thin Steel Members with Bolt Connection Using Lamb Wave and PZT Element (Lamb파 전달을 이용한 볼트 연결된 얇은 강판부재의 손상해석)

  • Rhee, Inkyu;Kwak, Hyo-Gyoung;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.587-596
    • /
    • 2006
  • A half portion of Korean railway bridges depends on the type of steel plate girder bridge. Since these bridges have been built in the early stage of Korean economical boom, numerous maintenance effort suffers from aging and progressive degradation issues at present. In accordance with these efforts, this paper would like to address the detailed analyses of thin steel plates with bolts in order to simulate the connection regions of steel plate girder bridge. The fundamental modal analysis, transient dynamic analysis with 3D piezoelectric element in open circuit loop and signal process with aids of TOF(time of flight) and WC(wavelet coefficient) are extensively discussed.

3D Tunnel Shape Fitting by Means of Laser Scanned Point Cloud (레이저 스캐닝 측점군에 의한 터널 3차원 형상의 재현)

  • Kwon, Kee Wook;Lee, Jong Dal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.555-561
    • /
    • 2009
  • In lieu of section profile data, a fitting of the bored tunnel shape is more significant confirmation for maintenance of a tunnel. Before the permit on the completion of a tunnel, deformation of the completed tunnel with respect to the design model are considered. And deformation can be produced at continuously along the entire of the tunnel section. This study firstly includes an analysis of algebraic approach and test it with an observed field data. And then a number of methods, line search method, genetic algorithm, and pattern search methods, are compared with the 3D tunnel shape fitting. Algebraic methods can solve a simple circular cylinder type as like a railway tunnel. However, a more complex model (compound circular curve and non circular) as like a highway tunnel has to be solved with soft computing tools in the cause of conditional constraints. The genetic algorithm and pattern search methods are computationally more intensive, but they are more flexible at a complex condition. The line search method is fastest, but it needs a narrow bounds of the initial values.

Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks (Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성)

  • Kim, Hyeonho;Han, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2020
  • This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.

A study on design and performance test of fire door with high endurance performance in submarine tunnel (고내구성능을 갖는 해저터널 방화문 설계방안 및 성능시험 연구)

  • Park, Sang-Heon;Hwang, Ju-Hwan;Choi, Young-Hwan;An, Sung-Joo;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.331-346
    • /
    • 2018
  • In the tunnel of domestic high - speed railway, the main fire - fighting facility, fire - extinguishing passageway, is installed. However, due to the high pressure of the high - speed train, frequent breakage and maintenance are caused by strong shock and long - term vibration. In order to solve these problems, it is necessary to improve the fire door, but in Korea, it is installed by submitting a certificate by simple KS F 2296 performance test. At present, it is developed as a simple test certification by producing a real scale fireproof door without the theoretical examination in advance, so that a high cost for improvement is occurring in Korea. Therefore, through this study, structural analysis study which can preliminary structure review was carried out in order to design the refuge connection passage fire door and to improve the performance improvement. In order to secure the reliability of the result value, the official authentication test (KS F 2296) were compared.

A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation (공용중인 NATM 터널의 성능중심 평가체계 연구: 평가모형 개발 및 검증)

  • Moon, Joon-Shik;Kim, Hong-Kyoon;An, Jai-Wook;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.107-120
    • /
    • 2020
  • In a performance-based evaluation of structures in use, the current performance is assessed by summing up the weighting of the evaluation indices for each performance. In this study, to suggest a performance-based evaluation technique for NATM tunnels in use, the performance evaluation indices were derived by examining the characteristics and similarities of each index developed from previous study. The weighting of the evaluation indices was derived by calculating the relative importance of each evaluation indices from the AHP analysis. In order to develop a quantitative evaluation model, grading criteria for each performance index was derived through literature review, and performance evaluation tables for road and railway tunnels were presented. In order to verify the significance of the proposed performance evaluation model, the correlation analysis was performed between each evaluation index and the final evaluation result. In the correlation analysis, the survey data measured through precision safety diagnosis in the tunnel in use was applied. It may be said that the proposed evaluation indices, weighting, criteria and evaluation models for tunnels in use can be applied to the performance-based maintenance system of tunnels.

The study on scheme for train position detection based on GPS/DR (GPS/DR기반의 차상열차위치검지방안 연구)

  • Shin, Kyung-Ho;Joung, Eui-Jin;Lee, Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.802-810
    • /
    • 2006
  • For a thorough train control, the precise train position detection is necessarily required. The widely used current way for train position detection is the one of using track circuits. The track circuit has a simple structure, and has a high level of reliability. However trains can be detected only on track circuits, which have to be installed on all ground sections, and much amount of cost for its installation and maintenance is needed. In addition, for the track circuit, only discontinuous position detection is possible because of the features of the closed circuit loop configuration. As the recent advances in telecommunication technologies and high-tech vehicle-based control equipments, for the train position detection, the method to detect positions directly from on trains is being studied. Vehicle-based position detection method is to estimate train positions, speed, timing data continuously, and to use them as the control information. In this paper, the features of GPS navigation and DR navigation are analyzed, and the navigation filters are designed by constructing vehicle-based train position detection method by combining GPS navigation and DR navigation for their complementary cooperation, and by using kalman filter. The position estimation performance of the proposed method is also confirmed by simulations.

  • PDF