DOI QR코드

DOI QR Code

Numerical Modeling for the Identification of Fouling Layer in Track Ballast Ground

자갈도상 지반에서의 파울링층 식별을 위한 수치해석연구

  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Lee, Sung-Jin (Track & Roadbed Research Team, Korea Railroad Research Institute)
  • 고규현 (금오공과대학교 토목공학과) ;
  • 이성진 (한국철도기술연구원 궤도노반연구팀)
  • Received : 2021.08.30
  • Accepted : 2021.09.16
  • Published : 2021.09.30

Abstract

Recently, attempts have been made to detect fouling patterns in the ground using Ground Penetrating Radar (GPR) during the maintenance of gravel ballast railway tracks. However, dealing with GPR signal data obtained with a large amount of noise in a site where complex ground conditions are mixed, often depends on the experience of experts, and there are many difficulties in precise analysis. Therefore, in this study, a numerical modeling technique that can quantitatively simulate the GPR signal characteristics according to the degree of fouling of the gravel ballast material was proposed using python-based open-source code gprMax and RSA (Random sequential Absorption) algorithm. To confirm the accuracy of the simulation model, model tests were manufactured and the results were compared to each other. In addition, the identification of the fouling layer in the model test and analysis by various test conditions was evaluated and the results were analyzed.

최근 자갈도상궤도의 유지관리 시 지반투과레이더(GPR) 장비를 이용한 지반 내부의 파울링 양상을 검측하는 시도가 이루어지고 있다. 하지만, 복잡한 지반조건이 혼재된 현장에서 다량의 노이즈가 포함된 채로 얻어지는 GPR 신호 자료 판독은 전문가의 경험에 의존하는 경우가 많으며, 정밀한 분석에 어려움도 많다. 따라서, 본 연구에서는 python 기반의 오픈소스코드인 gprMax와 RSA(Random sequential Absorption) 알고리즘을 이용하여 자갈도상 재료의 파울링 정도에 따른 GPR 신호특성을 정량적으로 분석하고 평가할 수 있는 수치해석 기법을 제안하였다. 해석모델의 예측 정확도를 평가하고자 모형시험체를 제작하여 시험 결과와 해석결과를 서로 비교하여 해석모델의 예측 정밀도를 확인하였다. 또한, 다양한 시험조건 별 모형체 시험 및 해석에서의 파울링층의 식별 여부를 평가하였으며 그 결과를 분석하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(GPR활용 자갈도상 및 노반상태 평가 기술 개발, 2019R1A2C200744212).

References

  1. Benedetto, A., Tosti, F., Ciampoli, L.B., Calvi, A., Brancadoro, M.G., and Alani, A.M. (2017), Railway Ballast Condition Assessment Using Ground-penetrating Radar-An Experimental, Numerical Simulation and Modelling Development, Construction and Building Materials, 140, pp.508-520. https://doi.org/10.1016/j.conbuildmat.2017.02.110
  2. Cheon, S.W. (2016), GPR response analysis using numerical modeling for cavity detection, Master's thesis, Sejong University.
  3. Choi, Y.G., Seol, S.J., and Suh, J.H. (2001), Dipole Antennas and Radiation Patterns in the Three-Dimensional GPR Modeling, Geophysical exploration, Vol.4, No.2, pp.45-54.
  4. Hong, W.T., Kang, S.H., and Lee, J.S. (2015), Application of Ground Penetrating Radar for Estimation of Loose Layer, Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. https://doi.org/10.7843/KGS.2015.31.11.41
  5. Huang, H. and Tutumluer, E. (2011), Discrete Element Modeling for fouled railroad, Construction and Building Materials, 25, pp.3306-3312. https://doi.org/10.1016/j.conbuildmat.2011.03.019
  6. Jang, H., Kim, H.J., and Nam, M.J. (2016), Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity, Geophysics and Geophysical Exploration, Vol.19, No.1, pp.20-28. https://doi.org/10.7582/GGE.2016.19.1.020
  7. Lee, S.J., Choi, Y.T., and Park, B.S. (2020), Analysis of GPR Signals by Different Frequencies According to Ballast Fouling Degree, Journal of the Korean Society for Railway, Vol.23, No.6, pp.513-523. https://doi.org/10.7782/jksr.2020.23.6.513
  8. Leng, J. and Al-Qadi, I. (2010), Railroad Ballast Evaluation Using Ground-Penetrating Radar: Laboratory Investigation and Field Validation. Transportation Research Record: Journal of the Transportation Research Board, Vol.2159, No.1, pp.110-117. https://doi.org/10.3141/2159-14
  9. Ngo, N.T., Indraratna, B., and Rujikiatkamjorn, C. (2016), Micromechanics based Investigation of Fouled Ballast Using Large-scale Triaxial Tests and Discrete Element Modeling, J Geotech Geoenviron Eng., Vol.143, No.2, pp.04016089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001587
  10. Roberts, R. Al-Qadi, I., Tutumluer, E., and Boyle, J. (2009), Subsurface Evaluation of Railway Track Using Ground Penetrating Radar, Technical report, U.S. Department of Transportation.
  11. Sadeghi, J., Motieyan-Najar, M.E., Zakeri, J.A., Yousefi, B., and Mollazadeh, M. (2018), Improvement of Railway Ballast Maintenance Approach, Incorporatingballast Geometry and Fouling Conditions, Journal of Applied Geophysics, 151, pp.263-273. https://doi.org/10.1016/j.jappgeo.2018.02.020
  12. Selig, E.T. and Waters, J.M. (1994), Track geotechnology and substructure management, Thomas Telford, London.
  13. Shin, J.H., Choi, Y.T., and Jang, S.Y. (2017), New Gain Function Based on Attenuation Characteristics of Ballast Track for GPR Analysis, Journal of the Korean Geo-Environmental Society, Vol. 18, No.4, pp.13-21. https://doi.org/10.14481/jkges.2017.18.1.13
  14. Sullivan, D.M. (2000), Electromagnetic Simulation Using the FDTD Method, IEEE Press.
  15. Taflove, A. (1995), Computational electrodynamics: the finite-difference time-domain method, Artech House.
  16. Taguchi, G. Chowdbury, S., and Wu, Y. (2005), Taguchi's quality engineering handbook: John Wiley and Sons, Inc.
  17. Warren, C. and Giannopoulos, A. (2011), Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method, Geophysics, 76:G37. https://doi.org/10.1190/1.3548506
  18. Yee, K.S. (1966), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag, Vol.14, No.3, pp.302-307. https://doi.org/10.1109/TAP.1966.1138693