• Title/Summary/Keyword: railway bridges

Search Result 501, Processing Time 0.034 seconds

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1306-1314
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2 %. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45 Hz~3.34 Hz and damping ratio revealed for 1.26~2.84 %. Maximum verticality deflection(4.86 mm) was sufficiently satisfied the design criteria(30.1 mm), but in the case of verticality acceleration's respond, design criteria BRDM(bridge design manual) & CTRL presentation derive rail limit value 0.35 g be more than value 6 time recorded, maximum was measured 0.49 g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck System of Railway Bridges (철도교용 프리캐스트 바닥판의 적정한 종방향 프리스트레스 수준의 산정)

  • Jang Sung-Wook;Youn Seok-Goo;Jeon Se-Jin;Kim Young-Jin;Hyung Tai-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail. acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses, design codes and theoretical equations for the frequently adopted PSC composite girder railway bridge. The estimated proper prestress level to counteract those tensile stresses is over 2.4 MPa, which is similar to the case of the highway bridges.

  • PDF

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges (PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석)

  • Manseok Han;Min-Kyu Song;Soobong Shin;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

Improved prediction of residual effective prestress force of Railway bridge PSC beam (철도교 PSC Beam의 잔류유효긴장력 추정 개선방안 연구(I))

  • Lee, Seong-Won;Lee, Ki-Seong;Lee, Won-Chang
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.538-543
    • /
    • 2003
  • This study is the developed prediction of residual effective prestress force of prestressed concrete beam bridges. Developed prediction method is based on the center camber of prestressed concrete beam, structural design. report of various PSC beams, construction reference materials of PSC beams. Evaluation of residual effective prestress force by developed method is compared with evaluation by structural design. This comparison results shows that this developed method is very effective method. Therefore prediction of residual effective prestress force by this developed method will be used for evaluation of the rating of various PSC beam bridges(road bridges and railway bridges).

  • PDF

A study for CWR on Steel Plate Girder Railway Bridge without Ballast (무도상 교량 특성을 고려한 장대화 방안에 관한 연구)

  • Min Kyung-Joo;Nam Bo-Hyun;Ban Geol yeong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.706-711
    • /
    • 2005
  • From the using CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, axial forces are occurred from a temperature on CWR and girders. Because of the additional axial forces, studies in order to CWR and developments of devices are proceeding. The track system of steel plate girder bridges is poor. When CWR is used for the system, the resistance on sleepers is increased from a temperature. So it is increasing an effect on CWR and, for solving the effect, longitudinal forces for buckle are being decreased. It is possible that opposite cases can be happened and it is also compared and studied. Therefore, we present a reasonable model for analyzing CWR within the property of steel plate girder railway bridges in Korea. Furthermore, the results analyzed for stability is compared and evaluated with tests. Finally, a reasonable method for the installation of CWR on bridges without ballast is suggested.

  • PDF

Test and Development of Fatigue Assesement System for Steel Railway Bridges (강철도교 피로평가 시스템 개발 및 검증)

  • Kyung Kab-Soo;Choi Il-Yoon;Lee Jun-Seok;Lee Hee-Hyun;Park Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.185-190
    • /
    • 2005
  • In order to evaluate that factors such as span length, member type and train loading affected on fatigue of steel railway bridges, in this paper, a series of field tests were carried out for some plate girder bridges. From the result estimated by rainflow counting method to analyze real strain-time curve obtained from the field test, it was known that the fatigue effect is more significant in the bridges having short span length and the secondary members regardless of train load types.

  • PDF

Application of AE Techniques for Detecting Wire Fracture in the PSC Railway Bridges (철도 PSC교량의 텐던 파단 감지를 위한 AE방법의 적용)

  • Choi Min-Seok;Youn Seok-Goo;Kim Eun-Keum
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1223-1228
    • /
    • 2005
  • A lot of PSC railway bridges have been constructed in countries and, they are considered as cost-effective and less maintenance-demanded structures. However, recently several collapse of PSC bridges happened in Europe show that PSC bridges have some serious maintenance problems related to tendon corrosion and wire fractures. Furthermore, any reliable NDT method is not presented until recently. In this paper, AE techniques are investigated for detection of wire fractures in PSC beam. Using long-term monitoring AE techniques, two acoustic signals of wire fractures in a PSC beam are obtained. These data are compared to other noise signals. Based on the test results, the characteristics of the AE signals are classified and wire fracture signals are figured out among the other AE signals. As a result, AE techniques are certainly exposed to tendon fracture sound, and application of AE techniques are better than any other non-destructive method.

  • PDF

3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties

  • Moazam, Adel Mahmoudi;Hasani, Nemat;Yazdani, Mahdi
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.257-271
    • /
    • 2017
  • There are many plain concrete arch bridges in Iran that have been used as railway bridges for more than seventy years. Owe to the fact that these bridges have not been designed seismically, and even may be loaded under high-speed trains, evaluation of fundamental frequencies of the bridges against earthquake and high-speed train vibrations is necessary for considering dynamics effects. To evaluate complex behavior of these bridges, results of field tests are useful. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. Several parameters are employed to describe the bridges, such as number of spans, length of spans, geometrical and material properties. In this study, results of field tests are used for modal analysis and adapted for 64 three dimensional finite element models with various physical parameters. Computer simulations show length of spans has important effect on fundamental frequencies of plain concrete arch bridge and modal deformations of bridges is in longitudinal and transverse directions. Also, these results demonstrate that fundamental frequencies of bridges decrease after increasing span length and number of spans. Plus, some relations based in the number of spans (n) and span length (l) are proposed for calculation of fundamental frequencies of plain concrete arch bridge.

Development Strategies and Feasibility Evaluation of Maintenance Operation System for Railway Bridge Based on Ubiquitous-BIM Technology (Ubiquitous-BIM 기술 기반의 철도교량 유지관리 운영체계 구축 전략 및 타당성 평가)

  • Moon, Hyoun-Seok;Kim, Hyeon-Seung;Kang, Leen-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.459-466
    • /
    • 2012
  • Due to the issues such as omission of data, document based management, maintenance based on measurement data and wire-based network, it is difficult existing maintenance system for railway bridges to act to diverse characteristics of site and environmental changes in real time. With these reasons, there are many constraints in establishing active maintenance strategies for railway bridges. To solve these issues, this study suggests an integrated maintenance business model based on practical utilization and information management based on BIM technology to build a smart maintenance operation system based on ubiquitous computing for railway bridges. To secure its development and practical applications, a quantitative evaluation by questionnaire analysis was performed. Therefore, it is expected that the suggested model will be utilized as a framework model in order to build the smart maintenance operation system from collection of maintenance data to action for railway bridges.