• 제목/요약/키워드: rail damper

검색결과 31건 처리시간 0.023초

Finite element model updating - Case study of a rail damper

  • Kuchak, Alireza Jahan Tigh;Marinkovic, Dragan;Zehn, Manfred
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.27-35
    • /
    • 2020
  • In rail industry, noise reduction is a concern to decrease environmental pollution. The current study focuses on rail damper modeling and improvement of the model through validation with experimental results. Accurate modeling and simulation of rail dampers, specifically tuned rail dampers with layers interconnected by bolt joints, shall enable objective-oriented improvement of their design. In this work, to improve the damper model cone pressure theory is applied in the FE model and the sensitivity analysis is then applied to gradually improve the FE model. The improved model yields higher Modal Assurance Criterion (MAC) values and lower frequencies deviation.

스크류 잭 및 댐퍼를 이용한 가동질량 레일의 평형제어 (The Balancing Control of Moving Mass Rail by a Screw Jack and Damper)

  • 변정환;최명수
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.134-139
    • /
    • 2007
  • A delivery ship is used to handle the cargo with the crane to/from the ships. The ship is inclined in the direction of a cargo which is hung on a crane. In this case, a arc shaped rail should be in the equilibrium state to get good anti-rolling performance. In this study, a device and control algorithm are developed to take accurate and quick equilibrium of the rail. The device is composed of a hinged immovable support, screw jack and damper. And the control system is based on I-PD control law to consider of control input saturation and overshoot. The controller is composed of integral controller of feedforward path and proportional-derivative controller of feedback path. The parameters of controller is designed to follow the reference signal and to remove overshoot. The simulation results show that the desirable control performance is achieved.

  • PDF

레일 진동모드 해석을 통한 레일 웹댐퍼 형상 검토에 관한 연구 (Study on the Shape Review of Rail Web-damper for Simulation of Rail Vibration Mode)

  • 김진호;김경민;이광도
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2866-2869
    • /
    • 2011
  • Concrete track to increase R&D compared to the existing gravel track 3dB(A) over the growing problem of noise has been raised. Accordingly, the noise reduction solutions for reducing the vibration of the rail that you want to reduce the noise of the concept is to develop the rail web-damper. For this purpose, first, that occurs while driving the train to simulate the vibration modes of rail vibration part of the main draw for this part of the effective vibration reduction to be made, a review of various shapes to try.

  • PDF

자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구 (Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect)

  • 허형석;배석정;송경석;김보겸
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

와전류 제동장치 설계검증을 위한 동역학적 해석 (Dynamic analysis of eddy current brake system for design evaluation)

  • 정경렬;김경택;백진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

부상제어 시스템에서 유연레일의 특성 분석 (Characteristics Analysis of Flexible Rail in Levitation Control System)

  • 김종문;김춘경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.733-734
    • /
    • 2006
  • In this parer, characteristics of the flexible rail in levitation control system are analysed. The magnetic levitation system is an electromagnet type and is full-scaled vehicles. The system consists of electromagnet, chopper, flexible rail, secondary suspension system and levitation controller. The mathematical modelling for the whole system is carried out. Especially, the flexible rail is modelled using second-order mass-spring-damper system. Using the derived model, the dynamic characteristics for the system are presented with different vehicle speed.

  • PDF

MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어 (Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF

MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰 (Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu;Yanhui Liu;Chia-Ming Chang;Ping Tan
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.573-587
    • /
    • 2023
  • A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.

MR 댐퍼를 적용한 철도차량 현가장치의 설계 및 제어 (Design and Control of Railway Vehicle Suspension System Featured by MR Damper)

  • 하성훈;최승복;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2010
  • This paper presents the feasibility for improving the ride quality of railway vehicle equipped with semi-active suspension system using magnetorheological(MR) fluid damper. In order to achieve this goal, a fifteen degree of freedom of railway vehicle model, which includes a car body, bogie frame and wheel-set is proposed to represent lateral, yaw and roll motions. The MR damper system is incorporated with the governing equation of motion of the railway vehicle which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on railway vehicle secondary suspension system, the sky-hook control law using the velocity feedback is adopted. Computer simulation for performance evaluation is performed using Matlab. Various control performances are demonstrated under external excitation which is the creep force between wheel and rail.

  • PDF